
 

Assessment of predictability of the C cycle in 

C-driven simulations  

 

Deliverable 2.3 

 

 

Authors: Acosta Navarro J. C., Bernardello R., Bopp L., Ilyina T., Li H., Mignot J., and Tourigny E. 

 

 

 

 

This project received funding from the Horizon 2020 programme under the grant agreement No. 821003. 

 



 

                                                                           

D2.3 Assessment of predictability of the C cycle in C-driven simulations | 1 

 

Document Information 

GRANT AGREEMENT 821003 

PROJECT TITLE Climate Carbon Interactions in the Current Century 

PROJECT ACRONYM 4C 

PROJECT START 
DATE 

1/6/2019 

RELATED WORK 
PACKAGE 

WP2 

RELATED TASK(S) T2.3.1 and T2.3.2 

LEAD 
ORGANIZATION 

MPG 

AUTHORS Acosta Navarro J. C., Bernardello R., Bopp L., Ilyina T., Li H., Mignot J., and 

Tourigny E. 

SUBMISSION DATE 2022-01-31 

DISSEMINATION 

LEVEL 

PU  

 

History 

DATE SUBMITTED BY REVIEWED BY VISION (NOTES) 

31/01/2022 H. Li 4C Executive Board  

    

    

Please cite this report as: Acosta Navarro J. C., Bernardello R., Bopp L., Ilyina T., Li H., Mignot J. and 

Tourigny E. (2022), Assessment of predictability of the C cycle in C-driven simulations, D2.3 of the 4C project 

Disclaimer: The content of this deliverable reflects only the author’s view. The European Commission is not 

responsible for any use that may be made of the information it contains.  



 

                                                                           

D2.3 Assessment of predictability of the C cycle in C-driven simulations | 2 

 

Table of Contents 

1 Introduction of C-driven prediction systems 5 

1.1 EC-Earth3-CC 5 

1.2 IPSL-CM6A-LR 6 

1.3 MPI-ESM 6 

1.3.1 MPI-ESM-LR 6 

1.3.2 MPI-ESM-HR 7 

2 Predictability of the carbon cycle using C-driven ESMs and carbon reconstructions 9 

2.1 Air-sea and air-land CO2 fluxes 9 

2.2 Atmospheric CO2 growth rate 9 

2.3 Spatial distribution of predictability relative to reconstruction 11 

3 Predictability of the carbon cycle using C-driven ESMs and carbon observations 13 

3.1 Air-sea and air-land CO2 fluxes 13 

3.2 Atmospheric CO2 growth rate 14 

3.3 Spatial patterns of predictability horizons of CO2 fluxes 16 

4 Conclusions 18 

5 Publication 18 

6 References 18 

 

 

List of tables 

Table 1. Summary of CO2 concentration-driven prediction systems based on 4C Earth system models 

(ESMs)..............................................................................................................................................................8 

 



 

                                                                           

D2.3 Assessment of predictability of the C cycle in C-driven simulations | 3 

 

List of figures 

Figure 1. Predictive skill of the detrended CO2 flux into the ocean (A), CO2 flux into the land (B), and variations 

in the inferred atmospheric CO2 growth (C). Predictive skill is quantified as anomaly correlation coefficients of 

the model simulations with respective model reconstructions. Note less model reconstructions for air-land CO2 

flux are available as shown in B and C. Significantly improved predictive skill at 95% level for initialized over 

uninitialized simulations are marked with filled dots. Hist represents the uninitialized 

simulations........................................................................................................................................................10 

Figure 2. Average bias of EC-Earth3-CC CO2 flux [kg/m2/s C] of retrospective predictions relative to land/ocean 

reconstructions. Top panel: land, bottom panel: ocean, left: year 1, center: year 2, right: years 2-6. Dots indicate 

statistically non-significant values at the 95% confidence................................................................................11 

Figure 3. ACC skill score of detrended EC-Earth3-CC CO2 fluxes of retrospective predictions relative to 

land/ocean reconstructions. Top panel: land, bottom panel: ocean, left: year 1, center: year 2, right: years 2-

6.......................................................................................................................................................................12 

Figure 4. Predictive skill of the detrended CO2 flux into the ocean (A), CO2 flux into the land (B), and variations 

in the inferred atmospheric CO2 growth (C). Predictive skill is quantified as anomaly correlation coefficients of 

the model simulations with the SOM-FFN observation-based product for the air-sea CO2 fluxes (a), and with 

GCB2019 for the air-land CO2 flux and anomalous atmospheric CO2 due to carbon sinks. Significantly improved 

predictive skill at 95% level for initialized over uninitialized simulations are marked with filled dots. Hist 

represents the uninitialized simulations. Note that MIROC-ES2L and EC-Earth3 hindcasts start earliest from 

year 1980, so from lead year 4 the time period is shorter than 1982–2013. GCB, Global Carbon Budget; SOM-

FFN, Self-Organizing Map-Feed-Forward Network. (Figure is redrawn based on Ilyina et al. 2021 and EC-Earth3 

model 10 ensemble member outputs.).............................................................................................................15 

Figure 5. Predictability horizon of the detrended CO2 flux into the ocean and the land in individual models, 

represented by the lead years with improved predictive skill due to initialization, i.e., when correlations in the 

initialized simulations are larger than 0 and also larger than those in the uninitialized simulations. Skill is 

quantified with anomaly correlation coefficient for the period 1982–2013. Predictive skill of the air-sea CO2 flux 

gained due to initialization is assessed against SOM-FFN, whereas for the air-land CO2 flux it is assessed 

against GCB. Crosses show significance at 95% level for the first 2 years. GCB, Global Carbon Budget; SOM-

FFN, Self-Organizing Map-Feed-Forward Network. (Figure is redrawn based on Ilyina et al. 

2021).................................................................................................................................................................17 

 

  



 

                                                                           

D2.3 Assessment of predictability of the C cycle in C-driven simulations | 4 

 

About 4C 

Climate-Carbon Interactions in the Coming Century (4C) is an EU-funded H2020 project that addresses the 

crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing the uncertainty in our 

quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through 

innovative integration of models and observations, providing new constraints on modelled carbon-climate 

interactions and climate projections, and supporting Intergovernmental Panel on Climate Change (IPCC) 

assessments and policy objectives. 

 

Executive Summary 

This deliverable aims for assessing the predictability of global carbon cycle using 4C decadal prediction systems 

(EC-Earth3-CC, IPSL-ESM, MPI-ESM) in a multi-model framework together with other available systems 

initialized by the observed states of the physical climate. We demonstrate a predictive skill for the global ocean 

carbon sink of up to 6 years for some models with longer regional predictability horizons across single models. 

On land, a predictive skill of up to 2 years is primarily maintained in the tropics and extra-tropics enabled by the 

initialization of the physical climate. We further show that anomalies of atmospheric CO2 growth rate inferred 

from natural variations of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill 

is limited by the land carbon sink predictability horizon. An increased ensemble size of predictions is found to 

enhance the significance of predictive skill. Our results of predictability are crucial for understanding the 

variations and further guiding future predictions of the variable global carbon cycle.  

 

Keywords 

CO2 concentration-driven simulations, reconstruction, carbon cycle predictions  
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We have used eight available C-driven prediction systems including three 4C models, i.e., IPSL-CM6A-LR, MPI-

ESM-LR, and MPI-ESM-HR, to investigate the predictability of global carbon cycle (Ilyina et al. 2021). This 

deliverable combines the results in Ilyina et al. (2021) and the newly available EC-Earth3-CC predictions to 

make a multi-model overview of predictability in global carbon cycle.    

1 Introduction of C-driven prediction systems  

1.1 EC-Earth3-CC 

EC-Earth3-CC is the carbon cycle version of the EC-Earth3 Earth System Model (Döscher et al., 2021). The 

EC-Earth3-CC GCM (Global Climate Model) version 3.3 comprises three major components: the atmospheric 

model IFS (Integrated Forecasting System) CY36R4, the ocean model NEMO 3.6 (Madec, 2015) which also 

includes the LIM3 sea-ice model (Rousset et al., 2015) and OASIS3-MCT (Craig et al., 2017)  that couples the 

main components. IFS is an operational global meteorological forecasting model developed and maintained by 

the European Centre of Medium-Range Weather Forecasts (ECMWF). NEMO is a state-of-the-art modelling 

framework for the ocean used for oceanographic research, operational oceanography, seasonal forecasting 

and climate research studies. EC-Earth3-CC includes additional components to represent the carbon cycle, 

also coupled via OASIS3-MCT: the LPJ-GUESS dynamic vegetation model (Lindeskog et al., 2013; Smith et 

al., 201), the PISCES ocean biogeochemistry model (Aumont et al., 2015) and the TM5 global atmospheric 

transport model (van Noije et al., 2014). LPJ-GUESS is used to simulate the evolution of the land vegetation, 

agricultural production and carbon fluxes as a function of climate and land-use, PISCES is used to simulate 

ocean biogeochemistry and CO2 fluxes with the atmosphere and TM5 is used for atmospheric chemistry and 

transport of trace gases such as CO2 and track surfaces fluxes of CO2 between ocean and land/ocean as well 

as anthropogenic CO2 emissions. In this project we use the T255-ORCA1 configuration, which corresponds to 

a spatial resolution of 80 km in the atmosphere/land and 100 km in the ocean, and 3x2 degrees with 10 vertical 

levels, CO2-only configuration for TM5. 

 

EC-Earth3-CC Initial  conditions  (ICs)  for  retrospective  predictions  with  EC-Earth3-CC  are  obtained  from  

three  different  procedures  for  ocean,  land  vegetation  and  atmosphere.  Atmospheric forcings and ICs are 

obtained from the latest ECMWF reanalysis datasets (ERA-20C before 1950, ERA5-BE from 1950 to 1978 and 

ERA5 from 1979 onward). The  ocean  reconstructions to generate the initial conditions are performed with the 

same ocean models used in EC-Earth3-CC (NEMO3.6-PISCES-LIM3) by restoring SST and SSS, as well as 

3D temperature and salinity below the mixed layer. We use the restoring timescale distribution of Sanchez-

Gomez  et al. (2016). At the surface, SST is restored using a  feedback coefficient of -200 W/m2/K while the 

feedback parameter for freshwater fluxes is set at -750  mm/day. Below the mixed layer, the restoring timescale 
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varies between 30 days (up to 800m) and 3650 days  (below 800m). Sub-surface nudging applied in the tropical 

band (15S-15N) is 10 times weaker to avoid spurious effects (Sanchez-Gomez et al. 2016). The reference 

dataset used for 3D nudging is EN4 (Good et al, 2013) and for surface restoring is the ECMWF Ocean 

Reanalysis System 5 (ORAS5; Zuo et al. 2019). Sea  Ice,  as  well  as  ocean  biogeochemistry,  are  let  free  

to  evolve  in  response to the constrained ocean physics. The  atmospheric  initial  conditions  are  obtained  

from the ECMWF reanalysis datasets,  which  have  been  interpolated  to  the  EC-Earth3  Standard  Resolution  

configuration  of  T255/N128  in  the  horizontal and 91 vertical levels, using full-pos from OpenIFS cycle 40r1. 

The  land  vegetation  initial conditions  are  obtained from a reconstruction using  the  EC-Earth3  LSM  (Land  

Surface  Model)  forced  by  ECMWF reanalysis surface forcings. The EC-Earth3 LSM couples the OSM (Offline 

Surface Model), an offline version of H-TESSEL, which is the land surface component of the IFS (Integrated 

Forecast System), to the LPJ-Guess dynamic vegetation model and uses  the  same  CMIP6  forcings  for  land-

use,  nitrogen  and  greenhouse  gases  as  the  coupled  ESM  version  EC-Earth3-CC, thus allowing it to 

perform PI (Pre-industrial) spinups and historical simulations up to the present day.  For more details please 

see the 4C project Deliverable 2.2 (Bernardello R. et al., 2020). 

 

The EC-Earth-3CC uninitialized historical simulations comprise 10 members at time of writing. The initial 

conditions are currently available for the 1980-2021 period. The decadal prediction hindcast period is 1981-

2020 with an ensemble size of 15 members, with each prediction initialized on Nov. 1st of the previous year 

spanning 7 years.   

1.2 IPSL-CM6A-LR 

The IPSL (Institut Pierre Simon Laplace) decadal prediction system used here is based on the IPSL-CM6A-LR version of 

the climate model described extensively in (Boucher et al., 2020). The component models include: LMDZ6 atmosphere 

(average 157km, 79 levels), NEMOv3.6STABLE ocean on the ORCA1 grid (nominal 1 with 75 vertical levels), LIM3 sea ice 

(on the same grid as the ocean) and ORCHIDEE (Cheruy et al., 2019) land (same grid as the atmosphere). The ocean 

biogeochemistry model used in IPSL-CM6A-LR is based on PISCESv2 (Aumont et al., 2015). 

The uninitialized historical simulations comprise 32 members. The hindcasts are initialized from a global century long 

simulation in which anomalies of global EN4 sea surface temperature and Atlantic sea surface salinity presented by Reverdin 

et al. (2019) have been nudged into the climate model. The nudging procedure is described by Estella-Perez et al. (2020). 

There is no assimilation of subsurface ocean, sea ice or atmospheric observations. Hindcasts start each December during 

1961-2014 and integrated for 10 years; 10 members are launched for each start date. 

1.3 MPI-ESM 

1.3.1 MPI-ESM-LR 
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MPI-ESM-LR is a low-resolution configuration of the Max Planck Institute Earth System Model (MPI-ESM1.1; 

Giorgetta et al. (2013)), on which the coupled model inter-comparison project phase 5 (CMIP5) simulations are 

based. The resolution of the ocean model MPIOM is about 150km with 40 vertical levels. The resolution of the 

atmosphere model ECHAM is T63 (200km) with 47 vertical levels. The ocean biogeochemistry component of 

MPI-ESM is represented by HAMOCC (Ilyina et al., 2013), and the land and vegetation component is 

represented by JSBACH. The decadal prediction system comprises 3 set of simulations, i.e., i) an ensemble of 

10-member uninitialized historical simulations extended to the RCP4.5 scenario; ii) assimilation run by nudging 

the ocean 3-D temperature and salinity anomalies from the ECMWF ocean reanalysis system 4 (ORAS4) 

(Balmaseda et al., 2013) and the atmospheric 3-D full-field temperature, vorticity, divergence, and surface 

pressure ECMWF Re-Analysis ERA40 (Uppala et al., 2005) during the period 1960-1989 and ERA-Interim (Dee 

et al., 2011) during the period 1990-2014; iii) An ensemble of 10-member retrospective prediction simulations 

initialized from the assimilation which is close to the observations, the initialized prediction simulations run for 

10 years starting annually from January 1st for the period 1961-2014. There is no direct assimilation of ocean 

biogeochemical data due to the limit of available data. 

1.3.2 MPI-ESM-HR 

MPI-ESM1.2-HR is based on a latest MPI-ESM model version 1.2 (Müller et al., 2018; Mauritsen et al., 2019), 

which is used for CMIP6 simulations. The major model development in the physical climate components relative 

to the CMIP5 model versions is the new radiation and aerosol parameterizations (Mauritsen et al., 2019). The 

representation of the land vegetation component is extended by including wild fires, multi-layer soil hydrology 

scheme, and nitrogen cycle. A major development to the ocean biogeochemistry is the implementation of 

cyanobacteria as additional phytoplankton specie for prognostic representation of nitrogen fixation, improved 

detritus settling and a number of other refinements. MPI-ESM1.2-HR is configured with grid spacings of 40 km 

in the ocean and T127 (100 km) in the atmosphere, with 40 ocean vertical levels and 95 atmospheric vertical 

levels, respectively. The assimilation in the MPI-ESM1.2-HR decadal prediction system is in general the same 

as in the MPI-ESM-LR prediction system for the atmosphere and the ocean, the difference for nudging is the 

inclusion of assimilation of sea-ice concentration from the National Snow and Ice Data Center (NSIDC) satellite 

observations (as described in Bunzel et al. (2016)). In addition, we run a pre-assimilation to spinup the ocean 

biogeochemistry for about 50 years before the assimilation so that the ocean biogeochemical processes slowly 

adjust to the new assimilated physical climate states (Li et al., 2019). The ensemble member for the initialized 

predictions and uninitialized historical of MPI-ESM1.2-HR simulations is 10. Note that the initialized 10-year 

long predictions of MPI-ESM1.2-HR system start annually from November 1st for the period 1960-2018. 
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Table 1. Summary of CO2 concentration-driven prediction systems based on 4C Earth system models 

(ESMs), i.e., EC-Earth3-CC, IPSL-CM6A-LR, MPI-ESM-LR, and MPI-ESM-HR.  

ESMs EC-Earth3-CC IPSL-CM6A-LR MPI-ESM-LR MPI-ESM-HR 

Resolution 

Atmosphere 

T255, 91 levels 
 

2.5° x1.3°, 79 levels T63, 47 levels T127, 95 levels 

Resolution  
Ocean 

1°, 75 levels 
 

1°, 75 levels 1.5°, 40 levels 0.4°, 40 levels 

Initialization 
Atmosphere 

ERA5 Full field Indirect ERA-40 and ERA-
Interim: full field 
vorticity, 

divergence,log(p), 

T 

ERA-40 and ERA-
Interim: full field 
vorticity, 

divergence,log(p), 

T 

Initialization 

Ocean 

Offline NEMO-

PISCES-LIM 
reconstruction, 

nudging full field 
EN4 subsurface T-

S, and full field 

ORAS5 SST and 
SSS. 

EN4 SST and  

Atlantic SSS 

ORAS4 3D T-S 

anomalies 

ORAS4  3D T-S 

anomalies, sea-ice 
concentration 

anomalies from 
NSIDC 

Initialization  

Land 

Indirect 

 

Offline land 

reconstruction 
with ERA5 

atmospheric 

forcings 

Indirect Indirect 

Ensemble size 15 (10 used in 

analysis) 

10 10 10 

Period of 

reconstruction 

1980-2021 1961-2014 1961-2014 1960-2018 

Retrospective  

predictions 

Yearly from 1st 

Nov. for 7 years 

Yearly from 1st Jan. 

for 10 years 

Yearly from 1st Jan. 

for 10 years 

Yearly from 1st Nov. 

for 10 years 

External forcings CMIP6 CMIP6 CMIP5 CMIP6 

References Döscher et al., 
(2021) 

Boucher et al. 
(2020) 

Giorgetta et al. 
(2013) 

Mauritsen et al. 
(2019) 
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2 Predictability of the carbon cycle using C-driven 

ESMs and carbon reconstructions 

2.1 Air-sea and air-land CO2  fluxes 

To elaborate on the data independence of our predictability assessment, we first estimate the predictive skill 

with the respective reconstruction simulations to provide evidence towards potential predictability. In Figure 1 

we quantify the predictive skill of the CO2 fluxes and atmospheric CO2 growth rate relative to the best-performing 

reconstructions.  

The predictive skill of air-sea CO2 flux (Figure 1A) is up to 7 years in NorCPM1, 5, 4 and 3 years of predictive 

skill is found in MPI-ESM1.2-HR, CanESM5/CESM-DPLE and IPSL-CM6A-LR. EC-Earth3-CC show high 

correlation until lead time of 6 years, but the significance of improved predictive skill relative to uninitialized run 

is not persistent. The ensemble size and model resolution matter for the predictive skill. For MPI-ESM1.2-HR, 

the predictive skill of 5 years with 10 ensemble members used in this study is higher than that of 3 years based 

on 5 available ensemble members presented in Li et al. (2019). Moreover, the high resolution version MPI-

ESM1.2-HR has longer predictive skill of air-sea CO2 flux than the low resolution version MPI-ESM-LR.  

For air-land CO2 flux (Figure 1B) the predictive skill is up to 3 years in EC-Earth3-CC. Both CanESM5 and 

NorCPM1 present a predictive skill of 2 years for the air-land CO2 flux. MPI-ESM-LR and MIROC-ES2L show 

lower predictive skill of 1 year. This suggests potential extension of predictability beyond the limit of  predictability 

in ENSO, which is on seasonal scale and largely regulates the air-land CO2 flux variations. 

2.2 Atmospheric CO2  growth rate 

We next examine effects of the global land and ocean carbon sink variations on the inferred variability and 

predictability of atmospheric CO2 growth rate (Figure 1C). Note that all prediction systems available to us are 

forced with prescribed evolution of atmospheric concentrations of CO2 and so the atmospheric compartments 

of those models do not respond to land or ocean CO2 fluxes. Here, the detrended sum of the global land and 

ocean carbon fluxes serves as a diagnostic of variations in the temporal evolution of the atmospheric CO2 

growth driven by climate modulated variability of carbon sinks. We find predictability of variations in atmospheric 

CO2 growth at lead times of up to 2 years in CanESM5, EC-Earth3-CC and NorCPM1 models, as indicated by 

higher correlations with reconstruction of the initialized simulations in comparison to the uninitialized ones. Given 

the higher amplitude of interannual air-land CO2 flux variability, atmospheric carbon growth rate anomalies 

predominantly follow the land carbon sink evolution, and the ocean carbon sink acts to dampen the land 

modulated interannual variations of atmospheric CO2. 
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Figure 1. Predictive skill of the detrended CO2 flux into the ocean (A), CO2 flux into the land 

(B), and variations in the inferred atmospheric CO2 growth (C). Predictive skill is quantified 

as anomaly correlation coefficients of the model simulations with respective model 



 

                                                                           

D2.3 Assessment of predictability of the C cycle in C-driven simulations | 11 

 

reconstructions. Note less model reconstructions for air-land CO2 flux are available as shown 

in B and C. Significantly improved predictive skill at 95% level for initialized over unin itialized 

simulations are marked with filled dots. Hist represents the uninitialized simulations.   

 

2.3 Spatial distribution of predictability  relative to 

reconstruction 

 

Figure 2. Average bias of EC-Earth3-CC CO2 flux [kg/m2/s C] of retrospective predictions relative to 

land/ocean reconstructions. Top panel: land, bottom panel: ocean, left: year 1, center: year 2, right: 

years 2-6. Dots indicate statistically non-significant values at the 95% confidence.   
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Figure 3. ACC skill score of detrended EC-Earth3-CC CO2 fluxes of retrospective predictions relative to 

land/ocean reconstructions. Top panel: land, bottom panel: ocean, left: year 1, center: year 2, right: 

years 2-6. 

In Figure 2 we show the mean biases of the EC-Earth3-CC hindcasts, compared to the land/ocean 

reconstructions. For the land, a strong negative bias appears over portions of the Amazon and subtropical 

Nothern Africa, and is likely related to a southward displacement of the ITCZ (due to widespread negative 

temperature anomalies over land of the Northern Hemisphere) leading to decreased precipitation (not shown) 

over these regions. Conversely a positive bias in precipitation in Southern Africa leads to a positive anomaly in 

air-land CO2 flux. Positive air-land CO2 flux anomalies over the Andes region are associated with a positive bias 

in precipitation. Positive biases in air-sea CO2 flux are seen in the Northern Atlantic, Northwest Pacific and 

Southwest Atlantic likely due to negative surface temperature biases in those regions (not shown), that increase 

the carbon dioxide solubility with respect to the ocean reconstruction. 

Spatial maps of ACC skill score of detrended CO2 fluxes from EC-Earth3-CC hindcasts compared to 

reconstructions are shown in Figure 3. Air-land skill is globally positive for Year 1, but becomes negative from 
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year 2 over many areas of the Northern Hemisphere as well as the areas with a negative bias in South America 

and Africa. For the air-ocean fluxes, skill is positive over most areas for Year 1 but becomes more patchy from 

Year 2, although still predominantly positive. 

 

3 Predictability of the carbon cycle using C-driven 

ESMs and carbon observations 
For ocean carbon uptake, we use the Self-Organizing Map-Feed-Forward Network (SOM-FFN; Landschützer 

et al., 2015) observationally based product to quantify the predictability. For land carbon uptake, direct 

observational estimates capturing the regional and global temporal variability are not available, hence we use 

the Global Carbon Budget 2019 (GCB; Friedlingstein et al., 2019) carbon sinks estimates as a benchmark. 

Undergoing annual updates, GCB offers a comprehensive and temporally consistent time-series of stand-alone 

land and ocean carbon cycle model simulations forced with observed climate data or climate reanalysis and 

additional observational products (atmospheric CO2, land cover change, etc.). We use a model mean from all 

available GCB models. 

3.1 Air-sea and air-land CO2  fluxes 

We further assess predictability horizons of the global ocean and land carbon sinks, as well as of the diagnosed 

changes in atmospheric CO2 growth represented by the lead years with improved predictive skill due to 

initialization (Figure 4). Predictive skill of the ocean carbon sink significantly improves with initialization up to 

lead year 5 against the SOM-FFN data product in MPI-ESM1.2-HR and EC-Earth3 and up to lead year 6 in 

CESM-DPLE and NorCPM1. A larger ensemble size of CESM-DPLE and NorCPM1 relative to the outputs from 

the other prediction systems maintains the predictive skill significance. Our previous study (Li & Ilyina, 2018) 

suggests that a large ensemble size is needed to capture decadal variations in the ocean carbon sink. 

Therefore, an increased ensemble prediction size could enhance the predictive skill of global carbon fluxes in 

other prediction systems, as well as in a multi-model ensemble.  

Predictive skill due to initialization up to lead year 2 for land carbon sink verified against GCB estimates is found 

in CanESM5, EC-Earth3, IPSL-CM6A-LR, MPI-ESM, and NorCPM1 (Figure 4B). This skill, supported by higher 

coherence between GCB estimates and initialized simulations at lead time of 2 years in most models, goes well 

beyond a seasonal skill attainable in previous studies. 
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3.2 Atmospheric CO2  growth rate 

The atmospheric CO2 growth rate changes induced by land and ocean carbon sink variations show predictive 

skill to lead year 2 (Figure 4) in the same models which have significant 2 years predictive horizons for the land 

carbon sink (i.e. in CanESM5, EC-Earth3, IPSL-CM6A-LR, MPI-ESM, and NorCPM1). Given the longer 

predictive horizons of the ocean carbon sink (in the models which provided output from both the ocean and the 

land biogeochemistry components), our results indicate that predictability of the atmospheric CO2 growth in 

these models is limited by the land carbon sink predictability. Analogously, a previous study, based on a perfect 

model framework (Spring & Ilyina, 2020), demonstrates that the predictive skill of atmospheric CO2 

concentration of 3 years is dampened by land. 

The predictive skill of CO2 fluxes and atmospheric carbon growth relative to data (Figure 4) is in general similar 

but in some models and variables higher than the predictive skill relative to the respective reconstruction (Figure 

3). This can partially refer to the ‘signal-to-noise paradox’ (Scaife and Smith, 2018), i.e., ensemble predictions 

generally show higher correlation with observed variability than with their own model simulations. In the 

meanwhile, the data products show more smoothed variations as in SOM-FFN data, and in the GCB2019 data 

much high frequency variabilities are canceled out by conducting multi-model mean. 
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Figure 4. Predictive skill of the detrended CO2 flux into the ocean (A), CO2 flux into the land 

(B), and variations in the inferred atmospheric CO2 growth (C). Predictive skill is quantified 

as anomaly correlation coefficients of the model simulations with the SOM-FFN observation-
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based product for the air-sea CO2 fluxes (a), and with GCB2019 for the air-land CO2 flux and 

anomalous atmospheric CO2 due to carbon sinks. Significantly improved predictive skill at  

95% level for initialized over uninitialized simulations are marked with filled dots. Hist 

represents the uninitialized simulations. Note that MIROC-ES2L and EC-Earth3 hindcasts start 

earliest from year 1980, so from lead year 4 the time period is shorter than 1982–2013. GCB, 

Global Carbon Budget; SOM-FFN, Self-Organizing Map-Feed-Forward Network. (Figure is 

redrawn based on Ilyina et al. 2021 and EC-Earth3 model 10 ensemble member outputs.) 

 

3.3 Spatial patterns of predictability horizons of CO 2  fluxes 

To investigate if the multi-model prediction systems establish robust spatial predictability horizons in the carbon 

cycle despite using different initialization/assimilation methods, we examine predictability horizons due to 

initialization. This is represented by the lead time of years when correlations of the initialized simulations are 

larger than those in the uninitialized simulations. Despite different pattern among models (here we only show 

the 4C model results in Figure 5), we find rather consistent CO2 flux predictability horizons established due to 

initialization in the different prediction systems in the hotspots of ocean carbon sink in the Southern Ocean, 

North Atlantic, and North Pacific.  

In these ocean regions acting as carbon sink hotspots, the improved skill is retained for up to 9–10 years, 

thereby going beyond the predictability horizons of the physical climate variables, e.g. SST (Li et al., 2016; 

Séférian et al., 2014). Our previous findings (Li et al., 2019) suggest that temperature variations largely control 

shorter-term (<3 years) predictability of the ocean carbon sink, while longer-term (>3 years) predictability is 

associated with nonthermal drivers. 

For air-land CO2 fluxes, statistically significant improvements due to initialization are found in regions of the 

tropics (e.g. Amazon, West Africa) and extra-tropics (e.g. Middle East, US Great Plains, Eastern Russia). These 

prediction systems represent land carbon fluxes improved due to initialization at lead time of 2 years. 
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Figure 5. Predictability horizon of the detrended CO2 flux into the ocean and the land in 

individual models, represented by the lead years with improved predictive skill due to 

initialization, i.e., when correlations in the initialized simulations are larger than 0 and also 

larger than those in the uninitialized simulations. Skill is quantified with anomaly correlation 

coefficient for the period 1982–2013. Predictive skill of the air-sea CO2 flux gained due to 

initialization is assessed against SOM-FFN, whereas for the air-land CO2 flux it is assessed 

against GCB. Crosses show significance at 95% level for the first 2 years. GCB, Global Carbon 

Budget; SOM-FFN, Self-Organizing Map-Feed-Forward Network. (Figure is redrawn based on 

Ilyina et al. 2021) 
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4 Conclusions 
We provide a first multi-model assessment of carbon cycle predictions with the ESM-based prediction systems 

initialized by the observed state of the physical climate, which is an important step toward skillful near-term 

predictions of the evolution of the land and ocean carbon sinks and the resulting variations in atmospheric CO2 

growth in response to climate variability and changes in anthropogenic carbon emissions. 

We find improved predictive skill due to initialization in both ocean and land carbon sinks. Predictive skill due to 

initialization for the global air-sea CO2 flux is up to 6 years in some models with indication of even higher regional 

skill in some regions. Representation of air-land CO2 flux improved due to initialization in all models considered 

in this study. We demonstrate predictive horizons of up to 2 years in five out of the seven models considered in 

this study. As year-to-year variations in atmospheric CO2 are largely determined by variations of the land carbon 

sink, the predictability horizon of 2 years found for the atmospheric CO2 growth rate is maintained by 

predictability of air-land CO2 flux.  

An increased ensemble prediction size could enhance the predictive skill significance of global carbon fluxes in 

ESM prediction systems. Predictability of the global carbon cycle relative to reconstruction is in general in line 

with the predictability relative to observations and data products. In some models, the real predictability relative 

to observations is higher than that relative to the respective reconstruction, this suggest the potential to improve 

predictability by model itself together with quality data products to initialize models and to evaluate the predictive 

skill.  
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