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About 4C 

Climate-Carbon Interactions in the Coming Century (4C) is an EU-funded H2020 project that addresses 

the crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing the uncertainty in 

our quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through 

innovative integration of models and observations, providing new constraints on modelled carbon-climate 

interactions and climate projections, and supporting Intergovernmental Panel on Climate Change (IPCC) 

assessments and policy objectives. 

 

Executive Summary 

This deliverable describes four data-based products on both the net land ecosystem CO2 exchange and the 
vegetation gross CO2 exchange, namely the Gross Primary Productivity (GPP). The first constraint concerns 
forest ecosystems with the estimation of the spatial distribution of net ecosystem productivity (NEP). Two 
different machine learning approaches are used to extrapolate in-situ NEP measurements using specific 
predictors such as forest age distribution, biome-specific age – NEP relationships and climate. The first 
constraint on gross primary productivity is provided by atmospheric COS measurements with a specific 
modeling framework to evaluate large scale dynamics of GPP. It is based on an atmospheric transport model 
that relates GPP-derived COS fluxes to atmospheric COS. The second constraint arise from solar-induced 
chlorophyll fluorescence (SIF) derived from satellite measurements. SIF measurements is directly related to 
photosynthesis activity, providing information on spatial and temporal variations of GPP (especially the 
responses to drought). Finally, estimates of the dynamics of terrestrial water balance is used to provide new 
constraint on the land carbon cyle, mainly through water availabitily to plants.   

The different products highlight the advances made within the 4C project to provide new constraints on the land 
carbon cycle based on recent in situ and satellite measurements combined with novel techniques All data 
products presented in this deliverable report are freely accessible (see respective “data availability” section) 
and serve as novel constraints for the partner work packages within the 4C project. 
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1 Introduction 
The objective of this report is to describe new observational constraints on the global and regional land CO2 

fluxes to support quantitative understanding of the carbon cycle. This new set of constraints, together with 

complementary global and regional ocean constraints (described in a separate deliverable) will provide 

independent information on the partitioning of land and ocean fluxes and help determine the origins and causes 

of the carbon budget imbalance. The new constraints are grouped into two sets: 

● The first one concerns the net forest carbon fluxes. 

● The second set concerns the gross land carbon fluxes, with constraint on the gross primary production 

(GPP) derived from atmospheric measurements of carbonyl sulfide (COS), solar-induced fluorescence 

and soil moisture dynamics. 

 

2 New constraints on the land net carbon fluxes 

2.1 Machine learning based forest net CO2 flux data  
Most of the global land carbon (C) sink is in forest biomes but current observations do not provide an accurate 
spatial distribution. On the one hand, biomass inventories have a good coverage of managed forests, but they 

are very sparse both in tropical and unmanaged forests. In addition, inventories measure biomass stock 

changes from repeated sampling campaigns, but changes in soil C are modeled, not observed. On the other 

hand, global maps of C dioxide (CO2) fluxes obtained from top-down atmospheric inversions have a too coarse 

spatial resolution for accurately separating forests from other biomes and such technique is very sensitive to 

transport model errors. Eddy covariance (EC) networks form a global observing system measuring local net 

CO2 fluxes across various ecosystems with more than 200 flux towers in forest ecosystems. Net ecosystem 
productivity (NEP) from flux towers can be separated into gross CO2 uptake by photosynthesis (GPP) and 

losses from ecosystem respiration (ER). Machine learning (ML) algorithms have paved the way to characterize 

the spatiotemporal variations of GPP and surface energy fluxes related to climate drivers despite the uneven 

coverage of the network. However, a realistic global spatial distribution of NEP from flux towers has never been 

obtained. For instance, the global mean NEP up-scaled from flux towers for all land ecosystems, was an 

implausibly large sink of ≈ 18 Pg C a-1. So far, forest inventories are used for carbon changes in tree biomass, 

and atmospheric inversions for estimating the net CO2 fluxes of large regions. But global EC measurements 

have failed to provide independent estimates of the global carbon balance of ecosystems, largely due to 
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challenges in correctly up-scaling fluxes from local to global scales. As a consequence, the gap between site-

scale EC observation and global patterns of forests C fluxes has not been closed.  

 

We developed two ML methods to estimate the spatial distribution of forest NEP over the globe by accounting 

for age and climate. The first approach called BAC (Biome, Age, Climate) combines biome-specific NEP-age 
curves obtained from a compilation from forest site data (known as chronosequences), a new gridded map of 

forest age retrieved from forest census data and remote sensing, gridded annual temperature (MAT), growing-

season length and gridded GPP up-scaled from flux towers (the FLUXCOM products using remote sensing 

data strictly limited to forests in order to minimize the mixed effects from other vegetation types). The training 

of the BAC algorithm is performed with local NEP, GPP measurements and local forest age from a harmonized 

FLUXNET dataset of more than 120 flux towers. 

 

The second approach called AC (Age, Climate) is based on the empirical model proposed by Jung et al.  where 
NEP is regressed from local flux tower observations using site-age, climate and GPP, then up-scaled using the 

same forest age maps, MAT and GPP fields than in BAC method. The key difference between the two 

algorithms is that AC makes use of a single global NEP-age relationship deduced directly from the FLUXNET 

data despite their uneven age sampling, whereas BAC takes additional a priori information from the biome-

specific NEP-age chronosequences. Note that wet tropical sites NEP data were corrected for low nighttime 

turbulence, based on original publications. The annual NEP maps were produced at 0.5° resolution and 

represent the period of the last decade. 

 

We show in Figure 1 the distribution of forest age, and in Figure 2 the biome-specific NEP-age relationships 

used in the BAC method, and the global relationship used in the AC one. The area occupied by very young 

forests in Figure 1a reflects recent stand-replacing disturbances, for instance fires in the boreal region (Figure 

2). The biome-specific NEP-age curves used in the BAC approach shown in Figure 3 have a common shape 

characteristic of the carbon balance of forests recovering from disturbance. NEP of recently disturbed forests 

is a net source of CO2 to the atmosphere dominated by the decomposition of soil carbon and woody debris as 

a legacy from earlier disturbance. NEP of young forests that accumulate biomass is a strong CO2 sink peaking 
between 40 and 60 years, depending on biome. NEP of old forests tends to smaller CO2 sources or sinks in 

the set of chronosequences compiled here. Generally, the time after disturbance at which NEP goes from 

source to sink is longer in the tropics (≈40 years) than in boreal and temperate regions (≈ 10 to 20 years) as 

observed in Figure 3. A similar behaviour was observed for instance at the Tapajos forest in southern 

Amazonia: the site was still a source 30 years after a disturbance from decaying dead trees, despite the fact 

that live trees accumulated biomass at high rates. 
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The two ML approaches to upscale NEP give large carbon sinks in tropical and temperate forests, while the 

boreal forest biome is only a small sink (Table 1). Larger NEP sinks prevail in the young and productive 

temperate forests of Western Europe and the Eastern US, and in temperate and subtropical forests of China. 

In China, recent plantations drive young ages and high NEP uptake (Figure b). Boreal forests take up CO2 in 
North America, but they are small sources in Northern Siberia (Figure ). In the tropics, both ML up-scaling 

methods point out to wet forests being smaller sinks per unit area than dry forests and woodlands (Figure ) 

despite the wet forests being much more productive. Despite similarities in geographic patterns of NEP, 

regional NEP budgets are rather close between the AC and the BAC up-scaling approaches (Table 1). 

Compared with previous estimates of tropical forest NEP based on flux towers being a sink of 8 Pg C a-1, the 

data in Table 1 give a smaller NEP. This is not because age is explicitly accounted for in this study, but because 

sites with low nighttime turbulence were removed (see comparison of BAC and AC with up-scaling using only 

climate and GPP in SI). Interestingly, the mean NEP of dry tropical forests is similar to the one of wet tropical 
forests (Table 1) despite GPP of dry forests being lower. Such a large NEP in dry tropical forests and woodlands 

in our approach comes from the fact that most of the FLUXNET towers in dry regions are locally large CO2 

sinks with suppressed respiration. Nonetheless, those towers are mainly from Mediterranean forests, which 

may not be good analogues of dry tropical forests. At face value, dry tropical forests have been observed to 

accumulate carbon at rather high rates between two fire disturbance events. 

 

Table 1: Net Ecosystem Productivity (NEP) up-scaled from EC networks with a global age-NEP relationship 
(AC), and with biome-specific age-NEP relationships (BAC). The net carbon balance (NBP) is derived from 
NEP by adding C losses not monitored by flux towers. Independent NBP from measured biomass carbon stock 
changes and modeled soil carbon change is from the global synthesis of Pan et al. 

  

Net Ecosystem Productivity 

NEP 

Net Carbon Balance 

NBP 

NBP from 

biomass 

inventories 

  
AC BAC AC BAC Pan et al. 

Boreal 0.7 0.5 0.3 ± 0.2 0.1 ± 0.2 0.5 ± 0.1 

Temperate 2.1 2.1 1.7 ± 0.2 1.7 ± 0.2 0.8 ± 0.1 
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Tropics 3.1 3.6 1.8 ± 0.5 1.8 ± 0.5 2.8 ± 0.7 

Wet tropics 1.6 2.1 0.8 ± 0.3 1.0 ± 0.3 N/A 

Dry tropics 1.6 1.5 1.0 ± 0.2 0.9  ± 0.2 N/A 

Globe 6.6 ± 0.7 6.5 ± 0.7 4.0 ± 0.9 3.9 ± 0.8 4.1 ± 0.7 

 

 

 

Figure 1: Forest age distribution for four biomes derived from the forest age map used to upscale NEP. In red 
is the sampling of forests age by flux towers. 
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Figure 2: Biome-specific NEP-age relationships from chronosequence sites (in blue) used in the BAC approach, 
compared with the global NEP-age relationship deduced from the FLUXNET network (in red) used in the AC 
model. 
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Figure 3: Spatial distribution of NEP derived from three approaches. (a) BAC: NEP up-scaled from EC with 
biome NEP-age curves, age maps, environmental variables; (b) AC: NEP up-scaled directly from EC data, age-
maps and environmental variables; (c) C: NEP up-scaled from EC data without age information. 



 

                                                                           

D1.7 New constraints on land carbon | 12 

 

3 New constraints on the land gross carbon fluxes 

3.1 Atmospheric COS constraint on gross primary production 
Carbonyl sulphide (COS) has been recognized  to  be  a  promising  surrogate  of  CO2  for tracking the amount 

of carbon that is absorbed by the terrestrial vegetation (see recent synthesis by Whealan et al. 2018).  Indeed, 

COS follows  the  same  diffusion pathway into the leaf chloroplasts. While absorbed CO2 following 

photosynthesis is re-emitted to the atmosphere through respiration processes, COS is nearly fully consumed 

by the enzyme carbonic anhydrase within the leaves. Therefore, the atmospheric drawdown of COS reflects to 

a large extent the plant uptake of COS, provided that the non-leaf COS fluxes have a much smaller temporal 
variability. In this respect, COS acts as a tracer of the CO2 assimilation by plants (gross primary production, 

GPP).  Launois et al. (2015) using atmospheric measurements of CO2 and COS and a simple assimilation 

scheme of COS by terrestrial ecosystems have shown the potential of such approach. Recently, Hilton et al. 

(2017) additionally showed that the variability of the  COS  temporal  gradient  is  mainly  driven  by  variation  

in  GPP  rather  than  other modelled COS flux. 

In this report, we thus propose a new framework to evaluate the Gross Primary Production (GPP) of the land 

surface models at large scale using the recent measurements of atmospheric COS combined with CO2 

observations. The atmospheric COS and CO2 concentrations are taken from the National Oceanic and 

Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) on the website: 

ftp://ftp.cmdl.noaa.gov/ (Montzka et al., 2004). 

Figure 4 below details the overall framework and the different COS components. These include absorption by 

plants and oxic soils, emissions by oceans (both direct and indirect), emissions by anoxic soils and wetlands, 

anthropogenic sources, emissions by fires and destruction by OH radical in the atmosphere. For the plant 

related COS uptake, we can use the linear formulation of the COS uptake by leaves as a function of GPP 

(Sandoval-Soto et al. 2005): 

FCOS = FCO2  ×   [COS] / [CO2]  ×   VCOS / VCO2 
where, 
FCOS and FCO2 are the COS and CO2 uptake respectively, [COS] and [CO2] being the  ambient  air  

concentrations  of  COS  and  CO2 and VCOS and VCO2 are  the  COS  and  CO2 leaf  uptake  velocities.  
The ratio of uptake velocities, LRU =  VCOS / VCO2 constitutes the main critical parameter. The LRUs vary by 

plant functional type (PFTs) and mainly depend on leaf stomatal conductance and light (Seibt et al. 2010). 

Once the different leaf COS uptake is calculated (from each model GPP) we further use a transport model 
(LMDZ in this example) to map the fluxes into the atmospheric concentrations (using all components of COS). 
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The equivalent CO2 concentration are obtained from the net ecosystem exchange from the same model 

simulations with the additional contribution of air-sea fluxes (taken from a climatology; Takahashi et al. 2009) 

and anthropogenic emissions (taken from the Global Carbon Project). 

 

Figure 4: Flowchart of the procedure used for the calculation of COS and CO2 concentrations from land surface 
model outputs. Different sources and sinks of COS (COS flux scenario) and CO2 (CO2 flux scenario) are 
calculated from flux maps and/or empirical modeling and transported to cover the globe using the LMDZ 
transport model. 

 
In order to refine/improve the overall methodology we have worked on two aspects: 
  
1/ First we investigated more precisely the potential information content, in terms of seasonal cycle (amplitude 
and phase) of the atmospheric COS data. Figure 5 displays the temporal evolution of the COS concentrations 
at the Alert site (left) and the yearly evolution of the amplitude of the COS seasonal cycle at all NOAA stations 
(right). This figure illustrates the variation of the COS from year to year, with for instance a smaller amplitude 
of the COS at ALT for 2014 compared to the preceding/following years. These year-to-year variations are likely 
to be primarily the response of year-to-year variations in the GPP fluxes. 
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Figure 5: Temporal evolution of the COS concentration at Point Barrow station (Alaska) (left) and temporal 
evolution of the seasonal amplitude of the seasonal cycle at all stations of the NOAA network (see location in 
the figure 4). The observations are taken from the NOAA/ESRL global monitoring network. 

 
2/ The Leaf Relative Uptake (LRU) of COS is a critical parameter in this approach. We have thus used a 

mechanistic approach to calculate with the ORCHIDEE land surface model the LRU for all ecosystems. Such 

work led us to define spatio-temporal variations of LRU to be used with the GPP of each land surface model 

(see Figure 4 for the approach). This work is under publication in Biogeosciences (Maignan et al., in review) 

and the figure 6 below illustrates the main results with respect to the optimal LRU values for the different PFTs 

of the ORCHIDEE model.  
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Figure 6: Distributions of the LRU values computed from the mechanistic approach, using a monthly climatology 
of simulated COS and GPP fluxes over the 2000-2009 period. Each subplot represents one of the 14 PFTs 
used in ORCHIDEE. The x-axis represents the LRU value and the y-axis the occurrences. The red vertical bar 
represents the median LRU value, the green one the LRU optimal value that minimizes the difference between 
the mechanistic and the LRU approaches. 

 

3.2 Solar-induced fluorescence constraint on gross primary 
production 

Since the first evidenced linear relationship between remotely‐sensed solar‐induced chlorophyll fluorescence 

(SIF) and GPP at broad spatial and temporal scales (Guanter et al., 2014; Zhang et al., 2016), it is anticipated 

that satellite SIF products will provide a significant constraint (reduction in uncertainty) on global GPP estimates 

(Parazoo et al., 2014). Several attempts were made in this direction with various products derived from different 

satellite instruments or different processing chains. In this context, it is thus crucial to first compare and evaluate 

the information content brought by the different SIF products.  

We have compared different SIF products to evaluate the most robust features that should be valorized. We 

are currently extending the initial study of Bacour et al. (2019) that compares three products from satellite 

measurements (one from OCO-2 and two from GOME2), including more recent products from TROPOMI 

instrument. Let us first recall the main points of the initial comparison done in Bacour et al. (2019). From the 

three products, they have selected an ensemble of grid points that would be representative of typical Plant 
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Functional Types of a land surface model. For each PFT they performed a cluster analysis in order to account 

for the diversity within each PFT in terms of climate, physiological, and structural characteristics, which would 

induce different SIF responses. The principle of the clustering approach is to minimize the variance within each 

cluster while maximizing the variance between clusters. Figure 7 illustrate the first two clusters of each PFT 
(when at least two clusters were identified). The main messages are: 

● Potential bias may occur between different products. 

● Two different processing chains applied on GOME-2 data can potentially lead to larger differences than 

those obtained from a different instrument. 

● The most robust feature across SIF products is provided by phase of the seasonal cycle, while the 
amplitude of the seasonal cycle differs more substantially.    

. 
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Figure 7: Examples of temporal variations of the SIF products for two clusters of each plant functional type 
(year 2015). The lines correspond to the means of the corresponding cluster and the dots to the actual products, 
with a different colour for each product. For OCO‐2, the time series are shown for the raw (@757 nm) and 
spectrally scaled (@740 nm) data. The number of pixels considered in each cluster is indicated. The PFTs are 
tropical evergreen broadleaf (TrEBF), tropical deciduous broadleaf (TrDBF), temperate evergreen needleleaf 
(TeENF), temperate evergreen broadleaf (TeEBF), temperate deciduous broadleaf (TeDBF), boreal evergreen 
needleleaf (BorENF), boreal deciduous broadleaf (BorDBF), boreal deciduous needleleaf (BorDNF), forests, 
C3 grasslands (temperate—TeC3GRA, tropical— TroC3GRA, and boreal—BorC3GRA) and C4 grasslands 
(C4GRA), and C3 (C3CRO) and C4 (C4CRO) crops. 
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Compared to the previous missions, the TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-

5 Precursor which combines a global continuous spatial sampling with a 5.5 km x 3.5 km pixel size at nadir, a 

daily revisit time, a wide spectral coverage, leads to an enormous improvement in the number of clear-sky 

measurements per day. We use the product derived by Caltech (Köhler et al. 2018) and the one derived in the 
frame of an ESA funded study for which we are involved. The retrieval scheme is mostly similar to that of 

Caltech but it uses a different cloud fraction product (derived from VIIRS for Caltech and from TROPOMI for 

our product). These products are first evaluated over vegetation free areas in order to quantify their bias. Over 

vegetated surfaces, they are evaluated in terms of mean seasonal cycle per ecosystems (phase and amplitude) 

but also in terms of spatial and temporal dynamic at high resolution in order to identify robust patterns of drought 

impacts on ecosystem fluxes. The selected data sets and the most robust spatial-temporal characteristics will 

be used in order to evaluate model GPP. 

3.3 Observation-based water fluxes to constrain land carbon fluxes   
 

Multiple novel observations-based datasets of water fluxes over land are available to help constrain carbon 

fluxes. Padrón et al. (2020) combine published datasets of global gridded runoff (R) (Ghiggi et al., 2019) and 

terrestrial water storage fluctuations (ΔTWS) (Humphrey and Gudmundsson, 2019) from 1902 to 2014 to obtain 
water availability estimates according to the water balance P – ET = R + ΔTWS; where P is precipitation and 

ET is evapotranspiration. The datasets for both R and ΔTWS are reconstructions from statistical data-driven 

models (DDM) calibrated with observations, which perform well compared with state-of-the-art hydrological 

models (Ghiggi et al., 2019; Humphrey and Gudmundsson, 2019). Near-surface air temperature and P data 

are used as explanatory variables for both reconstructions. In addition, there are also estimates of all water 

cycle components from multiple land-surface model (LSM) simulations that are driven with observational 

atmospheric data (van den Hurk et al., 2016), which are available at https://esgf-node.llnl.gov/search/cmip6/ 

under the experiment ID “land-hist”. A manuscript about the land water and carbon balances in these offline 
CMIP6 simulations is under preparation. The core atmospheric forcing data used for both the DDM and LSM 

reconstructions are from the Global Soil Wetness Project Phase 3 (GSWP3) (Kim et al., 2017). Although these 

reconstructions are not exempt from caveats such as not accounting for land-use changes (DDM), local land–

atmosphere feedbacks (LSM) and groundwater withdrawal (DDM and LSM), they are complementary. Using 

both the DDM and LSM reconstructions, Padrón et al. (2020) identified an attributable contribution of human-

induced climate change to the pattern of changes in dry season water availability around the world (Figure 8). 

Multiple regions have experienced increased drying in the dry season, particularly at extratropical latitudes. 

This result, together with the importance of low soil moisture as a stress on ecosystem production globally (Liu 
et al., 2020), highlight the relevance of observations-based land water fluxes to study the land carbon balance. 
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Figure8: Change in dry season water availability from the recent period 1985–2014 relative to the period 1902–
1950 based on the reconstructions from (a) data-driven models (DDM) and (b) land surface models (LSM). 

 

Further progress has been made by extending the runoff reconstruction from Ghiggi et al. (2019) to quantify 

the uncertainty in global runoff reconstructions that is implied by uncertainty in the atmospheric forcing data. 
To this end a multi-forcing observation-based global runoff reanalysis was developed (Ghiggi et al. in review). 

This comprehensive product is based on 21 different atmospheric forcing data sets (Figure 9) and provides 

uncertainty estimates by means of up to 525 stochastically generated ensemble members. The ensemble 

reconstruction is evaluated using independent observations that were not used for model calibration and 

compares favorably to global hydrological model simulations. This newly developed data product allows for 

new insights into the uncertainties of global water balance estimates, that are of relevance for carbon cycle 

research.  

 

 
Figure 9: Atmospheric data sets contributing to the ensemble reconstruction of global runoff (Ghiggi et al, in 
review). 
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