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About 4C 

Climate-Carbon Interactions in the Coming Century (4C) is an EU-funded H2020 project that addresses the 
crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing the uncertainty in our 

quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through 

innovative integration of models and observations, providing new constraints on modelled carbon-climate 

interactions and climate projections, and supporting Intergovernmental Panel on Climate Change (IPCC) 

assessments and policy objectives. 

 

Executive Summary 

The objective of 4C WP2 is to develop the capability of 3 European ESMs (IPSL-ESM, MPI-ESM, EC-Earth) to 

predict the near-term evolution of carbon sinks, atmospheric CO2, and climate in response to future emissions. 

To predict the atmospheric CO2, IPSL-ENS, MPG, and BSC are developing/ have developed their emission-

driven ESM prediction system enabling prognostic atmospheric CO2 concentration. This deliverable (1) 
describes the 4C emission-driven prediction system and how each group initializes the ESM predictions,  (2) 

presents the reconstructions in the past years and predictions into next years on atmospheric CO2 and the 

corresponding air-land and air-sea CO2 fluxes, and (3) shows how much the COVID19 pandemic induced 

emission reduction affect the global carbon cycle and atmospheric CO2 concentration.  

 

Keywords 

Earth System Models, Atmospheric CO2, Reconstruction, Near-term Predictions, Carbon cycle 
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1 Introduction of the prediction systems 
To facilitate prediction of the next year atmospheric CO2, all the three 4C prediction model centers have 

endeavored to develop their decadal prediction systems based on emission-driven simulations with prognostic 

atmospheric CO2 concentration. Given a new dimension of freedom, the climate states and circulations in the 

emission-driven model requires new adjustments and therefore are different than in the concentration-driven 

model, a separate spinup and control simulation under the emission-driven framework is necessary.  

As the anthropogenic emissions in the last year was drastically reduced due to Covid19 pandemic relative to 

previous years (Le Quéré et al. 2020; Forster et al. 2020), the CMIP6 baseline scenario (i.e., ssp245) are not 

suitable anymore for the predictions. For these runs, we use adjusted CO2 emissions, other greenhouse gas 

concentrations, aerosol and ozone forcings from a newly endorsed CMIP6 CovidMIP (Jones et al. 2021; Lamboll 

et al. 2020; Fiedler et al. 2020). In this study, we use the CovidMIP two-year blip scenario forcings for our 

simulations from year 2015 and for the period before we use the CMIP6 historical forcings. To investigate the 
influence of the emission reductions, we have also shown the changes of global carbon cycle in comparing with 

the predictions under ssp245 baseline forcings. If it is not specifically stated, the results shown in this report are 

driven by CMIP6 historical plus two-year blip scenario forcings.  

1.1 IPSL-CM6A-LR  
The IPSL Earth System numerical model is composed of three models (atmospheric, oceanic, and terrestrial 

biosphere) that are coupled together. We refer to this model as IPSL-CM6A-LR. The three models are LMDZ 

(v6A-LR, Hourdin et al., 2020) for the atmosphere general circulation, NEMO (v3.6,  Aumont et al., 2015; Madec 

et al., 2017; Rousset et al., 2015; Vancoppenolle et al., 2009) for the oceanic general circulation, and 

ORCHIDEE (v2.0, Peylin et al., 2020, in preparation) for the land surface processes respectively. The NEMO 

model further encompasses three main components: the ocean physics NEMO-OPA (Madec et al., 2017), the 

sea ice dynamics and thermodynamics NEMO-LIM3 (Rousset et al., 2015; Vancoppenolle et al., 2009), and the 

ocean biogeochemistry NEMO-PISCES (Aumont et al., 2015). Overall, this constitutes the reference version of 
IPSL-CM6A-LR which was used for the CMIP6 experiment (Boucher et al., 2020). 

Predictions based on the IPSL-CM6A-LR climate model are initialized from a global century long simulation in 

which anomalies of global EN4 sea surface temperature and Atlantic sea surface salinity presented by Reverdin 

et al. (2019) have been nudged into the climate model. The nudging procedure is described by Estella-Perez et 

al. (2020). It includes in particular a variable nudging strength depending on the upper mixed layer depth, as 
described in Ortega et al 2016. Furthermore, the low frequency modulation of sea surface salinity anomalies as 

reconstructed by Reverdin et al (2019) are combined to the climatology of SSS from EN4. There is no 

assimilation of subsurface ocean, sea ice, biogeochemistry or atmospheric observations.  
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1.2 MPI-ESM1.2-LR 
MPI-ESM1.2-LR refers to low resolution version of MPI-ESM with atmosphere ~200km in the horizontal and 47 

vertical levels and ocean ~150km in horizontal and 40 vertical levels (Mauritsen et al., 2019). We nudge 

atmospheric 3D full-field temperature, vorticity, divergence, and surface pressure from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) Re-Analysis ERA40 (Uppala et al. 2005) for the period 1958-

1979 and ERA5 (Hersbach et al. 2020) for the period from 1980-2020. For the ocean component, we use 

Ensemble Kalmann Filter (EnKF, refer to Brune et al. 2018) method to assimilate full fields of subsurface profiles 
of temperature and salinity from EN4 data (Good et al. 2013). The land and ocean biogeochemical component 

is indirectly initialized via the atmospheric and oceanic data assimilation in the fully coupled ESM.  

Due to the unavailability of ocean reanalysis data from ECMWF for the recent years, we had to switch our ocean 

initialization and implemented EnKF assimilation method. It is computationally more expensive than our 

previous system based on nudging, and it requires several cycles of spinup run for the ocean circulation to 
reach an quasi-equilibrium state before the reconstruction run.  

1.3 EC-EARTH3-CC 
EC-Earth3-CC is the carbon cycle version of the EC-Earth3 Earth System Model. A detailed description of model 

components can be found in Döscher et al. (2021). Initial conditions for EC-Earth3-CC are obtained from three 

different procedures for atmosphere, land vegetation and ocean. For the ocean, the procedure includes 
restoring of SST and SSS as well as 3D temperature and salinity Newtonian dumping below the mixed layer. 

We use the restoring timescale distribution of Sanchez-Gomez et al. (2016) below the mixed layer which varies 

between 10 days (up to 800m) and 360 days (below 800m). At the surface SST is restored using a feedback 

coefficient between flux and temperature of -200 W/m2/K while the feedback parameter for freshwater fluxes is 

set at -750 mm/day. We leave a 10-times weaker 3D nudging band between 15oS-15oN. The reference dataset 

used for surface restoring is the ECMWF Ocean Reanalysis System 5 (ORAS5) (Zuo et al., 2019), while the 3D 

nudging is applied towards EN4 (Good et al. 2013). Finally, the atmospheric forcing used is the DRAKKAR 
forcing set DFS5.2 (Dussin et al. 2016) which is based on the ERA-40 and Era-Interim reanalyses for the period 

1958-1979 and ERA5 for the period 1979-2020. Sea Ice, as well as ocean biogeochemistry, are let free to 

evolve in response to the constrained ocean physics. . The atmospheric initial conditions are obtained from the 

ERA5 reanalysis from ECMWF, which have been interpolated to the EC-Earth3 Standard Resolution 

configuration of T255/N128 in the horizontal and 91 vertical levels, using full-pos from openIFS cycle 40r1. For 

the land vegetation the LPJ-GUESS dynamic vegetation model is forced offline using the ERA-20C reanalysis 

for the period prior to 1979 and ERA5 from 1979-2020, for consistency with the ocean reanalyses used for 

generating the Ocean ICs (more details in D2.2).  
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Because of this procedure EC-Earth3-CC does not have interactive atmospheric carbon for the reconstructions. 

A full assimilation coupled procedure is under development and it will be tested with EC-Earth3-CC as soon as 
ready. At the moment, the forecast of atmospheric CO2 is realized by initializing the atmosphere with uniform 

CO2 concentration from the CMIP6 CovidMIP dataset.  

  

Table 1: Overview of 4C emission-driven prediction systems  

MODEL IPSL-CM6A-LR MPI-ESM1.2-LR EC-EARTH3-CC 

Resolution 
Atmosphere 

2.5°x1.3°, 
79 levels 

T63, 47 levels T255, 91 levels 

Rosolution 
Ocean 

1°, 75 levels 1.5°, 40 levels 1°, 75 levels 

Initialization 
Atmosphere 

 None ERA-40 before 1979 and 
ERA5 from 1980: Vorticity, 
divergence, log(p), T; full 
field with nudging 

ERA5 full-field 

Initialization 
Ocean 

Nudging towards SST 
(ERSSTv5) and SSS (doi: 
10.6096/SSS-BINS-ATL) 
using a restoring 
coefficient dependent on 
the mixed layer depth 
(Ortega et al 2017) 

EN4 3D full field T and S 
with ensemble kalmann 
Filter  

EN4 3D nudging T and S 
with weaker nudging band 
around equator. SST and 
SSS restoring to ORAS5. 
Atmospheric forcing: 
DFS5.2 1958-1979 + ERA5 
1980 – 2020. 

Initialization 
Land 

 Indirectly initialized by 
atmospheric and oceanic 
data assimilation within the 
fully coupled ESM  

LPJ-GUESS forced offline 
with ERA5 1979-2020 after 
preindustrial 
spinup+transient up to 
1979. 

Ensemble Size 10 members 10 members 10 members 

Period of 
reconstruction 

1901-2016 1958-2020 1958-2020 
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Hindcasts and 
forecasts 

10 years starting from Jan 
1st 1961-2016 

5 years starting from 
Nov.1st 1965-2020 

5 years starting from Nov.1st 
1975-2020 (in progress)  

External 
forcings 

CMIP6 historical (1958-
2014) plus ssp245 baseline 
(2015- ) 

CMIP6 historical (1958-
2014) plus ssp245 baseline 
(2015- ) and CovidMIP Two-
year blip (2020- ) scenario  

CMIP6 historical (1958-
2014) plus ssp245 baseline 
(2015- ) and CovidMIP Two-
year blip (2020- ) scenario 

References Boucher et al. (2020) Mauritsen et al. (2019) Sanchez-Gomez et al (2016) 

 

2 Historical simulations of the atmospheric CO2 
concentration  

 

Figure 1 shows the prognostic atmospheric CO2 concentration from EC-Earth3-CC and MPI-ESM1.2-LR 

emission-driven historical uninitialized simulations in comparison to the CMIP6 prescribed CO2 concentration 

and the NOAA-GML data measurements. As the atmospheric CO2 concentration is acumulative quantity, the 

deviations in the previous historical years when less data constraints are available show impact on the 
concentration in recent years. For instance, the models could not capture the plateau of atmospheric carbon 

increment in the 1940-1950s, this ends up with a ~10ppm higher atmospheric CO2 concentration than the 

observations for MPI-ESM1.2-LR and ~30ppm for EC-Earth3-CC. This model bias needs to be corrected in the 

reconstructions and predictions in order to compare with observations. For EC-Earth3-CC, the deviation of 

prognostic atmospheric CO2 concentration relative to the CMIP6 input4MIPs data starts from the 1920s until 

1950s with a steeper slope, indicating a larger atmospheric CO2 increment during this period. However, as 

shown from the consistent slope of the curves, the increment of atmospheric CO2 after 1950s is similar to that 
in the CMIP6 input4MIPs and NOAA-GML observations.  
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Figure 1. Time series of the atmospheric CO2 concentration from EC-Earth3-CC and MPI-
ESM1.2-LR historical uninitialized simulations in comparison with the CMIP6 prescribed 
atmospheric CO2 concentration from input4MIPs and the NOAA-GML observations 
(Dlugokencky and Tans 2020). 

 

Historical simulations of atmospheric CO2 with the IPSL-CM6A climate model in its emission-driven mode are 

still underway. For these emission-driven simulations, two important improvements were brought to the IPSL-
CM6A-LR reference version. Previously, in ORCHIDEE, the downregulation was modelled as a logarithmic 

function of the increase of the CO2 concentration relative to 380 ppm (following Sellers et al., 1996). However, 

at high CO2 concentration values (700 ppm and above) the limiting effect of nitrogen on carbon absorption by 

the terrestrial biosphere was probably overestimated. A new parametrization of the downregulation has been 

introduced. It is now modelled as a hyperbolic function of the increase of the CO2 concentration relative to 380 

ppm. Furthermore, in LMDZ, interactive CO2 and CO2 transport capabilities were introduced. The coupled model 

is now forced by emissions as opposed to being forced by CO2 concentration. Carbon fluxes from the terrestrial 
biosphere and from the ocean to the atmosphere are taken into account (at 15-minute and 1-day frequency, 

respectively). The model further computes the atmospheric CO2 concentration and it models the atmospheric 

CO2 transport. This allows for biogeochemical and oceanic processes to react to the spatial distribution of the 

CO2 concentration but also for the computation of the radiative effect of the CO2.  
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Figure 2 : Spin-up (upper panel) and historical (lower panel - underway) simulations with IPSL-
CM6A. See text for details. 

Because land and ocean carbon fluxes are slightly drifting as well as not equilibrating towards net zero fluxes 

in the pre-industrial control simulation, we had to determine appropriate corrections to be applied, so that 

atmospheric CO2 is stable in the interactive carbon simulation. Two sets of simulations were performed. These 
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were performed with the same model where atmospheric transport is enabled, the atmospheric CO2 

concentration is computed, and the radiative code sees the transported atmospheric CO2. The two sets however 
differ on whether the carbon fluxes are subject to a constant atmospheric CO2 concentration (set 1), or not (set 

2). Each set is comprised of 4 simulations where no correction was applied (1), correction was applied to the 

oceanic component only (2), to the land component only (3) or to both (4). We refer to a given simulation by 

both its set number and its own number (e.g., simulation 1.3 is simulation number 3 of set 1). The results of 

these simulations are shown in Figure 2 which illustrates that applying a correction to the land component 

provides the best results. We have run these simulations until reaching a satisfactory equilibrium. Using the Set 

2 simulations we have then run historical simulations. These are currently running and no definitive conclusion 

can be made yet. The retained simulation will be the one providing the best global CO2 growth rate and inter 
hemispheric gradient. 

 

3 Reconstruction and prediction of the 
atmospheric CO2 concentration and CO2 fluxes 

3.1 Reconstruction  
By assimilating atmospheric and oceanic observational data products into EC-Earth3-CC and MPI-ESM1.2-LR 

decadal prediction system, we can reproduce the variations of the historical global carbon cycle globally. As 

shown in Figure 3, the atmospheric carbon growth, net carbon flux into the ocean and net carbon flux into the 
land reconstructed by MPI-ESM1.2-LR show consistent variations with the global carbon budget (GCB2020, 

Friedlingstein et al., 2020) in the last decades with high correlations of 0.82, 0.97, and 0.73, respectively. As 

EC-Earth3-CC land and ocean components are reconstructed separately based on stand-alone models; 

therefore, no prognostic atmospheric CO2 is available from the reconstruction. The net carbon flux into the 

ocean and the net carbon flux into the land reconstructed by EC-Earth3-CC show coherent variations as 

GCB2020 with correlations of 0.89 and 0.68, respectively. 
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Figure 3. Time series of (A) atmospheric carbon growth rate, (B) carbon fluxes into the ocean, and (C) 
carbon fluxes into the land from EC-Earth3-CC and MPI-ESM1.2-LR reconstructions in comparison with 
Global Carbon Budget (GCB 2020, Friedlingstein et al., 2020). The thin blue curves in B and C show 
individual GCB stand-alone model results. The numbers in the legend show the correlation coefficients 
between reconstructions and GCB2020. Note that the EC-Earth3-CC land and ocean components are 
reconstructed separately, therefore no prognostic atmospheric CO2 is available from the reconstruction.  

 

3.2 Hindcast skill  
Retrospective predictions based on MPI-ESM1.2-LR emission-driven hindcasts, which are initiated from the 

reconstructions, show predictive skill in the atmospheric carbon growth rate, air-sea CO2 fluxes, and air-land 

CO2 fluxes (Figure 4). The air-sea CO2 fluxes have higher predictive skill up to 5 years, and the detrended air-

land CO2 fluxes and atmospheric carbon growth rate show predictive skill of 2 years. 
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Figure 4. Predictive skill of atmospheric carbon growth rate (A and D), air-sea CO2 (B and E) and air-
land CO2 fluxes (C and F) from MPI-ESM1.2-LR reference to Global Carbon Budget (GCB 2020, 
Friedlingstein et al., 2020)). A-C show results of anomaly correlation coefficients from original time 
series, and D-F show results from detrended time series. All are based on annual mean time series for 
the time period from 1970-2019. The filled circles show significant predictive skill at 95% confidence 
level and the additional larger circles indicate improved significant predictive skill due to initialization 
in comparing to the freely historical simulations. We use a nonparametric bootstrap approach (Goddard 
et al., 2013) to assess the significance of predictive skill. 

 

3.3 Predictions into next years 
Figure 5 shows the hindcasts together with predictions of atmospheric CO2 concentration and increment. The 

model simulations show deviations relative to the NOAA-GML observations of atmospheric CO2 concentration 

(Figure 5A). We applied bias correction (i.e., mean state and trend from 2010-2020) to model predictions and 

end up with a very close evolution of the atmospheric CO2 concentration towards observation (Figure 5B). The 

coherence of the evolution is shown at all the lead time, the decrease of skill in capturing interannual variations 

along with lead time is more obvious in the atmospheric CO2 increment rather than the concentration itself 
(Figure. 5D).  
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Figure 5.  Reconstruction and predictions of the atmospheric CO2 concentration (A-B) and increment 
(C-D) from MPI-ESM1.2-LR simulations. A and C are original model outputs, B and D the time series are 
adjusted towards observation regarding to the mean and trend of atmospheric CO2 concentration from  
2010-2020. The color box-plots in B and D show the predictions starting from 2020 at lead time from 1 
to 5 years. The NOAA_GML data are from Dlugokencky and Tans (2020).  

 

Figure 6 shows the first attempt at forecasting future atmospheric CO2 concentration with EC-Earth3-CC. 

Although the model predicts a clear difference between the ssp245-baseline and the COVID 2-yr blip scenarios 

in atmospheric CO2, this is mainly due to the different initial CO2 concentration and emissions rather than to a 
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difference in the behavior of the land and ocean C sinks which is almost identical between the two scenarios. 

To note the rather limited spread in the two ensembles during the first forecast year, which may be due to our 
choices of perturbing only the atmosphere and of initializing the predictions with a uniform atmospheric CO2 

field. A solution for both aspects is under development and it will be ready for next year predictions and the 

hindcasts.   

 

Figure 6. EC-Earth3-CC forecast for the period 1st Nov 2020 to 31st Oct 2023 of atmospheric CO2 
concentration, land and ocean C sink. Plots show monthly values. Cyan/magenta thin lines represent 
the single members of the respective ensembles: ssp245/COVID 2-yr blip, while the thick blue/red lines 
represent the respective ensemble means. The land C flux prediction reaches only the end of 2022 
because LPJ-GUESS is designed to output only at the end of the year.  

 

Prediction of atmospheric CO2 concentration and increment from EC-Earth3-CC and MPI-ESM1.2-LR (Figure 

7) show increase of atmospheric CO2 concentration in general but with a lower rate in the next years than 

normal years because of the emission reductions. The increase of atmospheric CO2 concentration in 2021 is 

predicted to be 0.80±0.31 ppm and 1.56±0.23 ppm by EC-Earth3-CC and MPI-ESM1.2-LR, respectively. The 

values are smaller than those for normal year atmospheric CO2 increment of about 2.5 ppm (refer to 

Friedlingstein et al., 2020). As the emissions recover to baseline in 2 years following the CovidMIP two-year blip 

scenario, the atmospheric increment in year 2022 will be higher than in 2021 with 3.25±0.51ppm and 

1.80±0.28ppm from EC-Earth3-CC and MPI-ESM1.2-LR predictions, respectively, and it turns to be higher than 
2.5ppm for the next years from 2023-2025 in MPI-ESM1.2-LR predictions. With regards to the predictive skill, 

as shown in Figure 4, the predictions in lead time up to 2 years have higher confidence than the predictions 

towards longer lead time of 3-5 years.  
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Figure 7. Predictions of atmospheric CO2 concentration (left) and increment (right) in the next 
years from EC-Earth3-CC and MPI-ESM1.2-LR simulations. The boxes show the mean and 
spread distribution from 10 ensemble members. The atmospheric CO2 increment from EC-
Earth3-CC  is calculated from CO2 concentration in December, i.e., Dec. 2021 minus Dec. 2020 
and Dec. 2022 minus Dec. 2021 for  year 2021 and 2022, respectively. The atmospheric CO2 

concentration from MPI-ESM1.2-LR is bias corrected as in Figure 5 and the increment is based 
on annual mean data.  

 

4 Influence of the emission reductions due to 
COVID-19 on the global carbon cycle  

To quantify the influence of emission reductions due to COVID-19 on the atmospheric CO2 concentration and 
CO2 fluxes, we calculate the difference between the simulations under two-year blip forcings and those under 

esm-ssp245 baseline forcings (Figure 8). EC-Earth3-CC and MPI-ESM1.2-LR are quite consistent in the 

atmospheric CO2 concentration changes. Discrepancies are shown in the CO2 fluxes especially for the spread 

of ensemble members, the internal variability seems larger in MPI-ESM1.2-LR than in EC-Earth3-CC.  
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Figure 8. Changes in atmospheric CO2 concentration (A), CO2 flux into the ocean (B), and CO2 flux into 
the land (C) due to COVID-19 induced emission reductions. Shown are the differences for EC-Earth3-
CC and MPI-ESM1.2-LR predictions using CovidMIP two-year blip and ssp245 baseline forcings. 

 

5 Conclusions 
The emission-driven simulations enable prognostic atmospheric CO2. With 4C prediction systems based on 

ESMs with interactive carbon cycle driven by CO2 emissions, we present our first results of predictions in 

atmospheric CO2 in the next years, the increment of atmospheric CO2 is predicted to be smaller relative to 

normal years due to the drastic COVID-19 pandemic induced emission reductions.  

MPI-ESM1.2-LR reconstruction and hindcasts show the ability of ESMs based decadal prediction system in 

capture and predict the variations of atmospheric carbon growth rate and the CO2 fluxes. The first 2 year 

predictions show significant predictive skill even in the multi-year variations with detrended time series.  
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