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About 4C 

Climate-Carbon Interactions in the Coming Century (4C) is an EU-funded H2020 project that addresses the 

crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing the uncertainty in our 

quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through 

innovative integration of models and observations, providing new constraints on modelled carbon-climate 

interactions and climate projections, and supporting Intergovernmental Panel on Climate Change (IPCC) 

assessments and policy objectives. 

 

Executive Summary 

The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics 

tool for the routine evaluation of Earth system models (ESMs). Here, we present extensions to ESMValTool that 

improve its benchmarking abilities, i.e., the assessment of the performance of ESMs with observation-based 

products. These extensions include the addition of new observation-based data sets (partly developed within 

the 4C project), in particular the CDS-XCO2, LandFlux-EVAL, Landschuetzer2016, Landschuetzer2020, 

MOBO-DIC_MPIM, and OceanSODA-ETHZ products. Moreover, new diagnostics have been added, which 

include general-purpose diagnostics useful for a broad evaluation of ESM output, diagnostics for the evaluation 

of the terrestrial carbon cycle, and diagnostics for the evaluation of the column-averaged mole fraction of CO2. 

All these extensions allow for a more detailed and in-depth analysis of ESM output, which can be used to 

improve the models, and ultimately leads to a better representation of the Earth system and to more accurate 

projections of the future climate change. 

Keywords 

Land carbon-cycle, Ocean carbon-cycle, Earth system model evaluation, ESMValTool. 
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1 Introduction 
Earth system models (ESMs) are state-of-the-art tools used to improve our understanding of mechanisms and 

feedbacks in present-day climate but also to project climate change for different future scenarios. Modern 

climate models have come a long way starting from simple atmosphere-only models some decades ago to 

today’s complex ESMs participating in the latest (sixth) phase of the Coupled Model Intercomparison Project 

(CMIP6; Eyring et al. 2016). Constant improvement of the models was and is needed to represent key processes 

of the Earth system that affect climate change. This increasing complexity, however, is also a possible driver 

for an increase in the inter-model spread of climate projections within the multi-model ensemble. Thus, more 

than ever, these developments require innovative and comprehensive model evaluation tools to assess the 

performance of these increasingly complex models. One of these software tools is the Earth System Model 

Evaluation Tool (ESMValTool; Righi et al. 2020, Eyring et al. 2020, Lauer et al. 2020, Weigel et al. 2021), a 

community diagnostics and performance metrics tool for the evaluation of ESMs that allows for routine 

comparison of single or multiple models, either against predecessor versions or against observations. 

Here, we present extensions to ESMValTool that have been implemented as part of the 4C project to improve 

its benchmarking capabilities (i.e., the evaluation of ESMs with observation-based data). These extensions 

include the addition of observation-based data sets used and/or developed within the 4C project, new general-

purpose diagnostics useful to get a broad overview of ESM output, diagnostics for a general evaluation of the 

terrestrial carbon cycle, and diagnostics for the evaluation of ESMs using a satellite-based atmospheric CO2 

data set. 

2 Inclusion of observation-based products into 

ESMValTool 
To ensure a fair and meaningful comparison of different ESMs, the input data for ESMValTool has to be 

formatted according to common standards, the so-called CMOR (Climate Model Output Rewriter) tables and 

definitions. This process is usually referred to as “CMORization”. This does not only apply to ESM output, but 

also to observation-based products. For this reason, ESMValTool conveniently provides scripts for many 

observation-based products that can be used to CMORize the data once before it can be used within 

ESMValTool. To improve the carbon cycle evaluation with ESMValTool, many new CMORizer scripts for 

observation-based products (and thus the data itself) have been made available as part of the 4C project. Table 

1 provides an overview of these new data sets.  
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Table 1. Observation-based products used and/or developed within the 4C projects that have been 

made available to ESMValTool through CMORization scripts. Variable names are described in Table 2. 

DATA SET NAME 
4C 
TASK 

VARIABLES TIME PERIOD REFERENCE 
FIGURE IN 
THIS REPORT 

CDS-XCO2 T1.1.3 xco2 2003–2017 Reuter et al. 

(2020) 

Figure 5 

LandFlux-EVAL T1.2.3 et, etStderr 1989–2005 Mueller et al. 
(2013) 

- 

Landschuetzer2016 T1.2.1 dpco2, fgco2, 
spco2 

1982–2015 Landschützer et 
al. (2016) 

- 

Landschuetzer2020 T1.4.1 spco2 1988–2019 
(monthly 
climatology) 

Landschützer et 
al. (2020) 

Figure 1 

MOBO-DIC_MPIM T1.2.2 dissic 2004–2017 
(monthly 

climatology) 

Keppler et al. 
(2020) 

Figure 2 

OceanSODA-ETHZ T1.2.1 areacello, 

co3os, dissicos, 
fgco2, phos, 

spco2, talkos 

1982–2020 Gregor et al. 

(2021) 

Figure 3 

 

Table 2. Variables provided by the observation-based products listed in Table 1. 

VARIABLE DESCRIPTION UNITS DIMENSIONS 

areacello Grid-cell area for ocean variables m2 latitude, 

longitude 

co3os Surface carbonate ion concentration mol m-3 time, latitude, 
longitude 

dissic Dissolved inorganic carbon concentration mol m-3 time, depth, 

latitude, 
longitude 
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VARIABLE DESCRIPTION UNITS DIMENSIONS 

dissicos Surface dissolved inorganic carbon concentration mol m-3 time, latitude, 
longitude 

dpco2 Delta CO2 partial pressure Pa time, latitude, 
longitude 

et, Stderr Evapotranspiration (error) mm day-1 time, latitude, 
longitude 

fgco2 Surface downward mass flux of carbon as CO2 kgC m-2 s-1 time, latitude, 

longitude 

phos Surface pH 1 time, latitude, 
longitude 

spco2 Surface aqueous partial pressure of CO2 Pa time, latitude, 
longitude 

talkos Surface total alkalinity mol m-3 time, latitude, 
longitude 

xco2 Column-average dry-air mole fraction of 

atmospheric CO2 

1 time, latitude, 

longitude 

3 General-purpose diagnostics 
As part of an initiative to make ESMValTool more user-friendly and versatile, a set of general-purpose 

diagnostics have been implemented (Schlund et al., in review). These diagnostics are able to handle arbitrary 

variables from arbitrary data sets, which makes them flexible to use. Moreover, they are highly customizable, 

and new plot types can be easily added. Example use cases for these diagnostics are the monitoring of running 

climate simulations (i.e., to get a quick overview of simulation results), comparison of different versions of a 

climate model, and the assessment of the performance of ESMs with regards to observational data. 

In the following, we show example plots created with the monitoring diagnostics where we compare model 

output with observational products from Table 1. Instead of individual ESMs, we show the multi-model mean 

(MMM) of the CMIP6 ensemble (one ensemble member [r1i1p1f1] for each model that provides the necessary 

data). 
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Figure 1. Climatology of surface aqueous partial pressure of CO2 (spco2) for the CMIP6 multi-model 

mean (top left) and the Landschuetzer2020 product (top right; Landschützer et al. 2020) averaged over 

the period 1988–2019. The bottom panel shows the bias between the two. Numbers in the top left 

corners correspond to the (area-weighted) average of the fields. Numbers in the top right corner of the 

bias plots correspond to the (area-weighted) root mean square error (RMSE) and the (area-weighted) 

coefficient of determination (R2) of the CMIP6 multi-model mean and Landschuetzer2020 fields. 

 

Figure 2. Annual cycle of dissolved inorganic carbon concentration (dissic) measured at a depth of 

2.5m for the CMIP6 multi-model mean and the MOBO-DIC_MPIM product (Keppler et al. 2020) averaged 

over the period 2004–2017. Dashed lines show the northern hemisphere (NH), solid lines the southern 

hemisphere (SH). The model output has been masked with the MOBO-DIC_MPIM prior to calculating 

spatial means to get consistent results. 
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Figure 3. Climatology of surface total alkalinity (talkos) for the CMIP6 multi-model mean (top left) and 

the OceanSODA-ETHZ product (top right; Gregor et al. 2021) averaged over the period 1982–2020. The 

bottom panel shows the bias between the two. Numbers in the top left corners correspond to the 

(area-weighted) average of the fields. Numbers in the top right corner of the bias plots correspond to 

the (area-weighted) root mean square error (RMSE) and the (area-weighted) coefficient of 

determination (R2) of the CMIP6 multi-model mean and OceanSODA-ETHZ fields. 

All figures show a good agreement of the MMM with the corresponding observational products. The global mean 

surface aqueous partial pressure of CO2 climatology (averaged over 1988–2019; see Figure 1) is slightly 

underestimated in the models, which is the result of an overestimation in the Atlantic Ocean, Indian Ocean and 

western Pacific Ocean, and an underestimation in the Arctic Ocean, Southern Ocean and tropical eastern 

Pacific Ocean. In general, relative errors are smaller than 10% for most parts of the globe. In addition, the 

geographical patters in the MMM and observational product (Landschuetzer2020) match well, with a root mean 

square error (RMSE) of 1.62 Pa (< 5% of the observational global mean) and a pattern correlation of R2 = 0.59. 

Figure 2 shows the annual cycle of the dissolved inorganic carbon concentration averaged over the period 

2004–2017 for both hemispheres separately. For both hemispheres, the MMM underestimates the observation-

based data set (MOBO-DIC_MPIM) by about 2%. Nevertheless, the phase and the amplitude of the annual 

cycle match very well. Finally, Figure 3 shows the 1982–2020 climatology of the surface total alkalinity. Similar 

to both other variables, the global mean surface total alkalinity is also underestimated by the models. This is 

true for most parts of the oceans, except for the northern Atlantic Ocean and the Arctic Ocean north of Canada. 

The spatial distribution of the surface total alkalinity matches very well between the MMM and the OceanSODA-
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ETHZ observational product, with a low RMSE of 0.05 mol m-3 (< 3% of the observed global mean) and a high 

pattern correlation of R2 = 0.73. 

4 Evaluation of the terrestrial carbon cycle  
Established carbon cycle benchmarks (Anav et al. 2013) have been implemented into ESMValTool. This 

includes the evaluation of time series, climatologies, trends, seasonal cycles, and performance metrics of 

carbon cycle–related variables like gross primary production (GPP), net biome production (NBP), leaf area index 

(LAI), and atmosphere-ocean CO2 flux. In a subsequent study, Gier et al. (in prep.) provide an extension of the 

carbon cycle evaluation on CMIP5 and CMIP6 models that specifically focuses on the differences between 

ESMs that include an interactive nitrogen cycle with ESMs that do not. Overall, the authors find a slight 

improvement in the simulation of land carbon cycle parameters when moving from CMIP5 to CMIP6. In addition, 

the inclusion of nitrogen limitation through an interactive nitrogen cycle in the models leads to a large 

improvement in the simulation of GPP (see Figure 4). Currently, these diagnostics are under active 

development, and will be published to the public ESMValTool repository as soon as the study is accepted. 

 

Figure 4. Zonal means of gross primary production (GPP) for the reference data sets FLUXCOM and 

MTE, and the different multi-model means (MMMs; see legend). Hatching for MMMs shows their 

standard deviation, with a horizontal hatching for models with and vertical hatching for models 

without interactive nitrogen cycle. 
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5 Spatially resolved evaluation of Earth system 

models with satellite column-averaged CO2 
Gier et al. (2020) provide new diagnostics to evaluate column-averaged dry-air mole fractions of atmospheric 

CO2 (XCO2). The evaluation compares the spatially resolved CDS-XCO2 satellite-based data set (Reuter et al. 

2020; see Section 2) with CMIP emission-driven simulations, with an emphasis on the impact of the satellite 

sampling on the results. One of the main findings of the authors is the resolution of the previously believed 

discrepancy of a strong negative trend in the northern midlatitude (30–60 °N) seasonal cycle amplitude (SCA) 

of XCO2 with rising XCO2 seen in the satellite observations which is neither seen in the models nor in the in-

situ data. The observational data set is composed of a synthesis of data from two different satellites which have 

different spatial resolutions resulting in different northern midlatitude mean SCAs during their active time. As 

this difference in mean SCA is larger than the SCA variation in the data, it introduces an artificial negative trend 

in the combined satellite data timeseries which can be reproduced by the models when they are sampled as 

the observations (see Figure 5). 

 

Figure 5. Seasonal cycle amplitude of column-averaged CO2 (XCO2) with respect to atmospheric 

XCO2 content. (Top) unsampled models, (middle) observations, (bottom) models sampled as 

observations. Similar to Figure 7 of Gier et al. (2020). 
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6 Conclusions and Outlook 
ESMValTool is a community-based diagnostic tool for the routine evaluation of ESMs. It is developed open-

source by an increasingly large number of developers from many international institutes. Over the last couple 

of years, more and more diagnostics and functionalities have been implemented, and it has been used as the 

primary evaluation tool for a large number of publications (e.g., ESMValTool has been used to produce figures 

for some chapters of the latest Assessment Report 6 of the Intergovernmental Panel on Climate Change IPCC; 

e.g., Eyring et al. 2021). 

In this report, we demonstrate new additions to ESMValTool that have been implemented as part of the 4C 

project to improve the benchmarking of ESMs. These additions include new observation-based data sets (see 

Section 2) and new diagnostics (see Sections 3, 4, and 5). The figures and analysis shown in this report only 

provide examples and by no means represent the full set of available diagnostics. For example, the new 

observation-based products are now available for every diagnostic in ESMValTool (not only for the general-

purpose diagnostics presented in Section 3), which opens up new opportunities for much more complex and in-

depth analyses of the ESM output. 
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