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About 4C 

Climate-Carbon Interactions in the Coming Century (4C) is an EU-funded H2020 project that addresses the 

crucial knowledge gap in the climate sensitivity to carbon dioxide emissions, by reducing the uncertainty in our 

quantitative understanding of carbon-climate interactions and feedbacks. This will be achieved through 

innovative integration of models and observations, providing new constraints on modelled carbon-climate 

interactions and climate projections, and supporting Intergovernmental Panel on Climate Change (IPCC) 

assessments and policy objectives. 

 

Executive Summary 

This report summarizes the analysis of three different climate model weighting methods used for reducing 

uncertainties in projected CO2 fluxes in Earth System Models (ESMs) within 4C. Here, we specifically focus on 

gross primary production (GPP), which is the largest flux of the terrestrial carbon uptake and mainly determined 

by photosynthesis. The weighting methods analyzed here include a performance- and interdependence-based 

scheme (Knutti et al. 2017), the multiple diagnostics ensemble regression (MDER; Karpechko et al. 2013), and 

a machine learning (ML)-based weighting approach (Schlund et al. 2020). All three methods have been 

successfully used to constrain a variety of target variables in the past and have been made publicly available 

as open-source-developed code in the Earth System Model Evaluation Tool (ESMValTool) as part of 4C. We 

find that the resulting weighted GPP is robust across all three weighting methods in terms of the globally 

aggregated result, as well as in the spatial distribution. This corroborates the credibility and plausibility of the 

different weighting approaches. 

Keywords 

Climate projections, climate model weighting, carbon cycle, land photosynthesis, gross primary production, 

ESMValTool. 
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1 Introduction 
A major source of uncertainty in future climate projections of Earth System Model (ESM) ensembles like the 

Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. 2016) are uncertainties in carbon cycle 

feedbacks and CO2 fluxes between the atmosphere, land and ocean (Arora et al. 2020). The CO2 fluxes play a 

crucial role in determining the amount of CO2 emissions that remain in the atmosphere as greenhouse gases, 

hence precise projections of these fluxes are necessary for accurate assessments of policy-relevant metrics 

like the TCRE (transient climate response to cumulative carbon emissions) and remaining carbon budgets for 

achieving specific warming targets. The largest flux of the terrestrial carbon uptake is gross primary production 

(GPP), which is defined as the production of carbohydrates by photosynthesis. In the future, elevated 

atmospheric CO2 concentration is expected to increase GPP through the CO2 fertilization effect, which forms a 

negative feedback with global warming as additional CO2 is removed from the atmosphere (e.g., Friedlingstein 

et al. 2006, Walker et al. 2020). 

Task 3.3 aims to increase the accuracy of CO2 flux projections of large ESM ensembles by developing and 

applying a new climate model weighting method and evaluating its robustness and performance against 

unweighted ensembles and other established weighting schemes. In this report, we compare a machine learning 

(ML)–based weighting method developed within the 4C project to two other weighting schemes, all of them 

applied to 21st century GPP projections of CMIP5 simulations. 

2 Methods 

2.1 Target variable and diagnostics  

The target variable used for all weighting schemes is the same as used by Schlund et al. (2020) in the ML-

based weighting approach: the rescaled future GPP in the CMIP5 Representative Concentration Pathway 8.5 

(RCP 8.5) scenario (emission-driven simulation). Here, “rescaled” refers to a correction of the global mean GPP 

by an emergent constraint on the CO2 fertilization effect that accounts for the ESMs’ biases in the response of 

future GPP to rising atmospheric CO2 concentrations (Wenzel et al. 2016). 

As diagnostics for the weighting schemes, we use process‐oriented diagnostics which are known to be 

physically relevant for the simulation of GPP. These diagnostics are listed in Table 1. All diagnostics are inferred 

from emission-driven CMIP5 simulations of the recent past (esmHistorical), but also from observations of the 

real Earth system. These observation-based products are ultimately used to constrain the target variable. 
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Table 1. Process‐oriented diagnostics used in the weighting schemes to constrain the target variable. 

NAME DESCRIPTION 
OBSERVATION-
BASED DATASET 

USED TIME 
RANGE 

PHYSICAL CONNECTION TO GPP 

GPP Gross primary 
production 

FLUXNET-MTE (Jung 
et al. 2011) 

1991–2000 - 

LAI Leaf are index LAI3g (Zhu et al. 
2013) 

1982–2005 The leaf area index is a measure for the 
number of leaves in a grid cell. The 
photosynthesis rate is highly 

dependent on the number of leaves 

(and vegetation in general). 

PR Precipitation CRU (Harris et al. 

2014) 

1901–2005 Water is essential for the chemical 

processes of photosynthesis. 

RSDS Downwelling 

solar radiation 

at surface 

ERA-Interim (Dee et 

al. 2011) 

1979–2005 Solar radiation is essential for the 

chemical processes of photosynthesis 

T Near-surface air 
temperature 

CRU (Harris et al. 
2014) 

1901–2005 Near‐surface air temperature and 
photosynthesis rate have a common 

driver (incoming solar radiation). 

2.2 Climate model weighting schemes 

An overview of the weighting schemes analyzed in this report is given in Table 2. All of them are publicly 

available in the most recent version of the Earth System Model Evaluation Tool (ESMValTool; Righi et al. 2020, 

Eyring et al. 2020, Lauer et al. 2020, Weigel et al. 2021, Schlund et al. 2023). 

Table 2. Overview of the weighting schemes used in this report. 

WEIGHTING SCHEME REFERENCE 

Performance- and interdependence-based weighting Knutti et al. 2017 

Multiple diagnostic ensemble regression (MDER) Karpechko et al. 2013 

ML-based weighting scheme Schlund et al. 2020 
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2.2.1 Climate model weighting based on performance and 

interdependence 

To improve the reliability of projections from large ESM ensembles, one approach is to weight the models based 

on their skill and interdependence (Knutti et al. 2017). This method assumes that the accuracy of multi-model 

projections can be improved by assigning larger weights to models that perform better compared to 

observational data. Similarly, models that are more similar to each other (i.e., are more dependent) receive 

lower weights, as these models provide redundant information. All in all, this weighting approach aims to reduce 

the spread of multi-model projections and produce a more robust ensemble average, which can provide more 

reliable and robust projections of future climate change. 

2.2.2 Multiple diagnostic ensemble regression (MDER)  

Multiple diagnostic ensemble regression (MDER) is a regression algorithm that uses iterative steps to select a 

subset of pre-selected diagnostic variables as input predictors to construct a multivariate linear regression model 

that optimally predicts a future target variable (Karpechko et al. 2013). In contrast to the other weighting 

schemes presented in this report, this method only works with scalar predictors, meaning each climate model 

is represented by a single value. MDER uses observational data for the selected diagnostics to create a multi-

diagnostic constraint and calculates weights for each model based on this constraint, which are then used to 

get a weighted projection of the target variable with lower uncertainties. 

2.2.3 Machine learning (ML)–based weighting scheme 

Within the 4C project, Schlund et al. (2020) expanded on the MDER approach by incorporating gridded data 

and utilizing a non-linear machine learning regression model. This involves inputting gridded observational data 

for the diagnostic/predictor variables into a machine learning algorithm that has been trained on climate model 

data to understand the relationship between current physically relevant predictors and a future climate target 

variable (as shown in Figures 1a and 1b). The approach was thoroughly tested through a leave-one-model-out 

cross-validation setup (as shown in Figure 1c). The resulting weighting scheme can be viewed as an implicit 

performance weighting that takes into account local characteristics and different significance levels for the 

various process-based predictors. 
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Figure 1. Graphical representation of the ML-based climate model weighting approach by Schlund et 

al. (2020). Panel (a) shows the training phase of the algorithm, where the ML model is fitted to the 

training data by finding an empirical (non-linear) relationship between two (in general, an arbitrary 

number of predictors is supported) process-oriented predictors (x1, x2) of the past climate and a target 

variable y (gray surface). The points on the graph represent grid cells from different climate models 

and are used as training data by the supervised ML algorithm (different colors correspond to different 

climate models). Panel (b) depicts the prediction phase, where the ML model is applied to 

observation-based values of the predictors (black points), resulting in ML-based predictions of the 

target variable for each grid cell. Panel (c) shows how the method is independently validated using a 

leave-one-model-out cross-validation approach. This approach involves removing one climate model 

at a time from the training data and evaluating the ML model's performance on the remaining data. 

From Schlund et al. (2020). 
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3 Results 

3.1 Climate model weighting based on performance and 

interdependence 

The performance- and interdependence-based weighting scheme by Knutti et al. (2017) takes into account the 

performance of the climate models (measured relative to observation-based products) and their 

interdependence (measured relative to other climate models). We use all diagnostics shown in Table 1 to 

calculate the performance and intercedence weights for the target variable. Figure 2 shows the weighted multi-

model mean and standard prediction error of GPP averaged over 2091–2100 in the RCP 8.5 scenario. This 

corresponds to a globally aggregated GPP of 180 GtC yr-1. 

 

Figure 2. Weighted multi-model mean (a) and standard prediction error (b) of the target variable GPP 

(2091–2100) using the performance- and interdependence-based weighting approach. 

3.2 Multiple diagnostic ensemble regression (MDER)  

In contrast to the other two weighting approaches presented in this report, MDER only considers globally 

aggregated values. Thus, as a first step, all diagnostics from Table 1 and the target variable are globally summed 

(GPP) or averaged (other variables) before entering the MDER algorithm. In the first step of this weighting 

scheme, diagnostics are selected by their correlation relative to the target variable. Due to the strong relationship 

between past and future GPP, the historical GPP remains the only predictor for the MDER model. In the second 

step, a linear model is built that relates the predictor and the target variable, and eventually used to create 

predictions for the target variables using observations of the predictor (see Figure 3a). MDER predicts a global 

GPP of (170 ± 26) GtC yr-1 in the period 2091–2100 (see Figure 3b). 
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Figure 3. Result of the MDER weighting. (a) Linear regression to predict future GPP from past GPP 

using a relationship (blue line) of the two. Numbers correspond to different CMIP5 models, the gray 

shaded area show the uncertainty of the linear regression, and the dashed lines the observation and 

the corresponding prediction. (b) Time evolution of unweighted GPP of the different models (gray 

lines), multi-model mean (red line), and observations (yellow line). The blue marker shows the 

weighted mean with uncertainties. 

3.3 Machine learning (ML)–based weighting scheme 

Similar to the MDER approach, the ML-based weighting approach also builds a statistical model between the 

diagnostics and the target variable. However, in contrast to MDER it uses all diagnostics (the importance of the 

individual predictors is determined implicitly) and applies a non-linear regression (here: Gradient Boosted 

Regression Tree algorithm; GBRT). The resulting mean prediction field and its corresponding standard 

prediction error are shown in Figure 4. This corresponds to a globally aggregated GPP of 169 GtC yr-1. 
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Figure 4. ML-based prediction of the mean (a) and standard prediction error of the target variable GPP 

(2091–2100) using a Gradient Boosted Regression Tree (GBRT) algorithm. 

4 Discussion and conclusions 
All weighting approaches presented in this report could be successfully applied to multi-model projections of the 

rescaled future GPP using ESMValTool. In terms of globally aggregated GPP, all approaches give yield similar 

results for the period 2091–2100 in the RCP 8.5 scenario: performance/interdependence weighting: 180 GtC 

yr-1, MDER: 170 GtC yr-1, and ML weighting: 169 GtC yr-1. These results are all consistent with the emergent 

constraint on CO2 fertilization that has been used to rescale the target variable in the first place (see Schlund et 

al. 2020 for details), which gives a globally aggregated GPP of (171 ± 12) GtC yr-1 for the period 2091–2100 in 

the RCP 8.5 scenario. Thus, the globally aggregated result is robust across all investigated weighting methods, 

which further corroborates the credibility and plausibility of the different approaches. 

In addition, in the performance/interdependence and ML-based weighting schemes, global patterns of future 

GPP can be analyzed (see Figure 2 and Figure 4). For both approaches, the mean predictions and 

corresponding standard prediction errors are very similar, with pattern correlations of r=0.81 (mean prediction) 

and r=0.56 (standard prediction error). Thus, the exact results of the two weighting schemes are slightly 

different, but the general patterns across the globe are mostly the same, especially for the mean prediction, 

which further underlines the robustness of the results in terms of the different weighting methods. 
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