4C Publications

  • Berger M., Kwiatkowski L., Ho D.T. and Bopp L. (2023). Ocean dynamics and biological feedbacks limit the potential of macroalgae carbon dioxide removal. Environ. Res. Lett. 18: 024039. DOI: 10.1088/1748-9326/acb06e

  • Clarke J.J., Huntingford C., Ritchie P.D.L. and Peter M Cox P.M. (2023). Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Environ. Res. Lett. 18(3): 035006. DOI: 10.1088/1748-9326/acbc8d

  • Dunkl I., Lovenduski N., Collalti A., et al (2023). Gross primary productivity and the predictability of CO2: more uncertainty in what we predict than how well we predict it. Biogeosciences 20: 3523–3538. DOI: 10.5194/bg-20-3523-2023

  • Feng M., Peng S., Wang Y. et al. (2023). Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models. Nat Commun 14: 3065. DOI: 10.1038/s41467-023-38803-z

  • Forster P. M., Smith C. J., Walsh T., et al. (2023). Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15: 2295–2327. DOI: 10.5194/essd-15-2295-2023

  • Heinrich V.H.A., Vancutsem C., Dalagnol R. et al. (2023). The carbon sink of secondary and degraded humid tropical forests. Nature 615: 436–442. DOI: 10.1038/s41586-022-05679-w

  • Jiang L.Q., Dunne J., Carter B.R., et al. (2023). Global surface ocean acidification indicators from 1750 to 2100. J. Adv. Model. Earth Syst. 15: e2022MS003563. DOI: 10.1029/2022MS003563

  • Jones M.W., Peters G.P., Gasser T. et al. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci Data 10: 155. DOI: 10.1038/s41597-023-02041-1

  • Joos F., Hameau A., Frölicher T.L., and Stephenson D.B. (2023). Anthropogenic attribution of the increasing seasonal amplitude in surface ocean pCO2. Geophysical Research Letters 50: e2023GL102857. DOI: 10.1029/2023GL102857

  • Keetz L.T., Lieungh E., Karimi-Asli K., et al. (2023). Climate-ecosystem modelling made easy: The Land Sites Platform. Global Change Biology 00: 1-13. DOI: 10.1111/gcb.16808

  • Keppler L., Landschützer P., Lauvset S. K., and Gruber N. (2023). Recent trends and variability in the oceanic storage of dissolved inorganic carbon. Global Biogeochemical Cycles 37: e2022GB007677. DOI: 10.1029/2022GB007677

  • Koven C.D., Sanderson B.M. and Swann A.L.S. (2023). Much of zero emissions commitment occurs before reaching net zero emissions. Environ. Res. Lett. 18: 014017. DOI: 10.1088/1748-9326/acab1a

  • Landschützer P., Tanhua T., Behncke J., and Keppler L. (2023). Sailing through the southern seas of air–sea CO2 flux uncertainty. Phil. Trans. R. Soc. A 381: 20220064. DOI: 10.1098/rsta.2022.0064

  • Lee D., Sparrow S. N., Min S. K. et al. (2023). Physically based equation representing the forcing-driven precipitation in climate models. Environ. Res. Lett. 18: 094063. DOI: 10.1088/1748-9326/acf50f

  • Li H., Ilyina T., Loughran T. (2023). Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model. Earth Syst. Dynam. 14: 101–119. DOI: 10.5194/esd-14-101-2023

  • Li L., Fang Y., Zheng Z., et al. (2023). A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0). Geosci. Model Dev. 16: 4017–4040. DOI: 10.5194/gmd-16-4017-2023

  • Liu L., Ciais P., Wu M. et al. (2023). Increasingly negative tropical water–interannual CO2 growth rate coupling. Nature 618: 755-760. DOI: 10.1038/s41586-023-06056-x

  • Ma D., Gregor L., and Gruber N. (2023). Four decades of trends and drivers of global surface ocean acidification. Global Biogeochemical Cycles 37: e2023GB007765. DOI: 10.1029/2023GB007765

  • Mayot N., LeQuéré C., Rödenbecet C. et al. (2023). Climate-driven variability of the Southern Ocean CO2 sink. Phil. Trans. R. Soc. A381: 20220055. DOI: 10.1098/rsta.2022.0055

  • Müller J.D., Gruber N., Carter B., et al. (2023). Decadal trends in the oceanic storage of anthropogenic carbon from 1994 to 2014. AGU Advances 4: e2023AV000875. DOI: 10.1029/2023AV000875

  • Palmer T.E., McSweeney C.F., Booth, B.B.B., et al. (2023). Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth Syst. Dynam. 14: 457–483. DOI: 10.5194/esd-14-457-2023

  • Rodgers K. B., Schwinger J., Fassbender A. J., et al. (2023). Seasonal variability of the surface ocean carbon cycle: A synthesis. Global Biogeochemical Cycles 37: e2023GB007798. DOI: 10.1029/2023GB007798

  • Schlund M., Hassler B., Lauer A., et al (2023). Evaluation of native Earth system model output with ESMValTool v2.6.0. Geosci. Model Dev. 16: 315–333. DOI: 10.5194/gmd-16-315-2023

  • Sparey M., Cox P., and Williamson M. S. (2023). Bioclimatic change as a function of global warming from CMIP6 climate projections. Biogeosciences 20: 451–488. DOI: 10.5194/bg-20-451-2023

  • Terhaar J., Frölicher T.L., and Joos F. (2023). Ocean acidification in emission-driven temperature stabilization scenarios: the role of TCRE and non-CO2 greenhouse gases. Environ. Res. Lett. 18: 024033. DOI: 10.1088/1748-9326/acaf91

  • Tschumi E., Lienert S., Bastos A., et al. (2023). Large variability in simulated response of vegetation composition and carbon dynamics to variations in drought-heat occurrence. Journal of Geophysical Research: Biogeosciences 128: e2022JG007332. DOI: 10.1029/2022JG007332

  • Varney R. M., Chadburn S. E., Burke E. J., et al. (2023). Simulated responses of soil carbon to climate change in CMIP6 Earth system models: the role of false priming. Biogeosciences 20: 3767–3790. DOI: 10.5194/bg-20-3767-2023

  • Wright R. M., Le Quéré C., Mayot N., et al. (2023). Fingerprint of climate change on Southern Ocean carbon storage. Global Biogeochemical Cycles 37: e2022GB007596. DOI: 10.1029/2022GB007596

  • Abadie C., Maignan F., Remaud M., et al. (2022). Global modelling of soil carbonyl sulfide exchanges. Biogeosciences 19: 2427-2463. DOI: 10.5194/bg-19-2427-2022

  • Allen M.R., Peters G.P., Shine K.P. et al. (2022). Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. npj Clim Atmos Sci 5: 5. DOI: 10.1038/s41612-021-00226-2

  • Argles A.P.K., Moore J.R., and Cox P.M. (2022). Dynamic Global Vegetation Models: Searching for the balance between demographic process representation and computational tractability. PLOS Clim 1(9): e0000068. DOI: 10.1371/journal.pclm.0000068

  • Bopp L., Aumont O., Kwiatkowski L., et al. (2022). Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences 19: 4267-4285. DOI: 10.5194/bg-19-4267-2022

  • Braghiere R. K., Fisher J. B., Allen K., et al. (2022). Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. J. Adv. Model. Earth Syst. 14: e2022MS003204. DOI: 10.1029/2022MS003204

  • Dai M., Su J., Zhao Y., et al (2022). Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends. Annu Rev Earth Planet Sci 50: 593-626. DOI: 10.1146/annurev-earth-032320-090746

  • Davies-Barnard T., Zaehle S., and Friedlingstein P. (2022). Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19: 3491-3503. DOI: 10.5194/bg-19-3491-2022

  • Friedlingstein P., Jones M.W., O'Sullivan M., et al. (2022). Global Carbon Budget 2021. Earth Syst. Sci. Data 14: 1917-2005. DOI: 10.5194/essd-14-1917-2022

  • Friedlingstein P., O'Sullivan M., Jones M. W., et al. (2022). Global Carbon Budget 2022. Earth Syst. Sci. Data 14: 4811–4900. DOI: 10.5194/essd-14-4811-2022.

  • Hardouin L., Delire C., Decharme B., et al. (2022). Uncertainty in land carbon budget simulated by terrestrial biosphere models: the role of atmospheric forcing. Environ. Res. Lett. 17: 094033. DOI: 10.1088/1748-9326/ac888d

  • Jackson R.B., Friedlingstein P., Le Quéré C., et al. (2022). Global fossil carbon emissions rebound near pre-COVID-19 levels. Environ. Res. Lett. 17: 031001. DOI: 10.1088/1748-9326/ac55b6

  • Jenkins S., Sanderson B., Peters G., et al. (2022). The Multi-Decadal Response to Net Zero CO2 Emissions and Implications for Emissions Policy. Geophysical Research Letters 49: e2022GL101047. DOI: 10.1029/2022GL101047

  • Kikstra J. S., Nicholls Z. R. J., Smith C. J., et al. (2022). The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geosci. Model Dev. 15: 9075–9109. DOI: 10.5194/gmd-15-9075-2022

  • Kondo M., Sitch S., Ciais P., et al. (2022). Are land-use change emissions in Southeast Asia decreasing or increasing? Global Biogeochemical Cycles 36: e2020GB006909. DOI: 10.1029/2020GB006909

  • Koven C.D., Arora V.K., Cadule P., et al. (2022). Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth Syst. Dynam. 13: 885–909. DOI: 10.5194/esd-13-885-2022

  • Kwiatkowski L., Torres O., Aumont O., and Orr J.C. (2022). Modified future diurnal variability of the global surface ocean CO2 system. Global Change Biology. DOI: 10.1111/gcb.16514

  • Lambert M. S. A., Tang H., Aas K. S., et al. (2022). Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro. Geosci. Model Dev. 15: 8809–8829. DOI: 10.5194/gmd-15-8809-2022

  • Lauvset S.K., Lange N., Tanhua T., et al. (2022). GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14: 5543–5572. DOI: 10.5194/essd-14-5543-2022

  • Liu Z., Deng Z., Zhu B. et al. (2022). Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. DOI: 10.1038/s41561-022-00965-8

  • Millington R.C., Rogers A., Cox P., et al. (2022). Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere 13: e4108. DOI: 10.1002/ecs2.4108

  • Orr J.C., Kwiatkowski L. & Pörtner H.O. (2022). Arctic Ocean annual high in pCO2 could shift from winter to summer. Nature 610: 94-100. DOI: 10.1038/s41586-022-05205-y

  • O’Sullivan M., Friedlingstein P., Sitch S., et al. (2022). Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat Commun 13: 4781. DOI: 10.1038/s41467-022-32416-8

  • Padrón R.S., Gudmundsson L., Liu L., et al. (2022). Drivers of intermodel uncertainty in land carbon sink projections. Biogeosciences 19: 5435–5448. DOI: 10.5194/bg-19-5435-2022

  • Parry I. M., Ritchie P. D. L., and Cox, P. M. (2022). Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dynam. 13: 1667–1675. DOI: 10.5194/esd-13-1667-2022.

  • Qiu C., Ciais P., Zhu D., et al. (2022). A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth 5: 86-97. doi: 10.1016/j.oneear.2021.12.008

  • Ritchie P.D.L., Parry I., Clarke J.J. et al. (2022). Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia. Commun Earth Environ 3: 199. DOI: 10.1038/s43247-022-00528-0

  • Rosan T.M., Sitch S., Mercado L.M., et al. (2022). Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Front. For. Glob. Change 5: 801408. DOI: 10.3389/ffgc.2022.801408

  • Sanderson B. M. and Rugenstein M. (2022). Potential for bias in effective climate sensitivity from state-dependent energetic imbalance. Earth Syst. Dynam. 13: 1715–1736. DOI: 10.5194/esd-13-1715-2022

  • Terhaar J., Frölicher T. L., and Joos F. (2022). Observation-constrained estimates of the global ocean carbon sink from Earth system models. Biogeosciences 19: 4431-4457. DOI: 10.5194/bg-19-4431-2022

  • Tschumi E., Lienert S., van der Wiel K., et al. (2022). The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition. Biogeosciences 19: 1979-1993. DOI: 10.5194/bg-19-1979-2022

  • Vaittinada Ayar P., Bopp L., Christian J. R., et al. (2022). Contrasting projections of the ENSO-driven CO2 flux variability in the equatorial Pacific under high-warming scenario. Earth Syst. Dynam. 13: 1097–1118. DOI: 10.5194/esd-13-1097-2022

  • Varney R.M., Chadburn S.E., Burke E.J., and Cox P.M. (2022). Evaluation of soil carbon simulation in CMIP6 Earth system models. Biogeosciences 19: 4671-4704. DOI: 10.5194/bg-19-4671-2022

  • Yun J., Jeong S., Gruber N. et al. (2022). Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink. Science Advances 8 (41). DOI: 10.1126/sciadv.abq0220

  • Zechlau S., Schlund M., Cox P. M. et al. (2022). Do Emergent Constraints on Carbon Cycle Feedbacks Hold in CMIP6? JGR Biosciences 127: e2022JG006985. DOI: 10.1029/2022JG006985

  • Zhang Y., Narayanappa D., Ciais P., et al. (2022). Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266). Geosci. Model Dev. 15: 9111–9125. DOI: 10.5194/gmd-15-9111-2022

  • Allen M., Tanaka K., Macey A., et al. (2021). Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environ. Res. Lett. 16: 074009. DOI: 10.1088/1748-9326/abfcf9

  • Bastos A., Orth R., Reichstein M., et al. (2021). Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dynam. 12, 1015-1035. DOI: 10.5194/esd-12-1015-2021.

  • Cain M., Jenkins S., Allen M.R., et al. (2022). Methane and the Paris Agreement temperature goals. Phil. Trans. R. Soc. A. 380: 20200456. DOI: 10.1098/rsta.2020.0456

  • Clarke J., Huntingford C., Ritchie P. et al. (2021). The compost bomb instability in the continuum limit. Eur. Phys. J. Spec. Top. 230: 3335-3341. DOI: 10.1140/epjs/s11734-021-00013-3

  • Fay A.R., Gregor L., Landschützer P., et al. (2021). SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach. Earth Syst. Sci. Data 13: 4693–4710. DOI: 10.5194/essd-13-4693-2021

  • Frischknecht T., Ekici A., and Joos F. (2022). Radiocarbon in the land and ocean components of the Community Earth System Model. Global Biogeochemical Cycles 36: e2021GB007042. DOI: 10.1029/2021GB007042

  • Ghiggi G., Humphrey V., Seneviratne S.I., and Gudmundsson L. (2021). G-RUN ENSEMBLE: A multi-forcing observation-based global runoff reanalysis. Water Resources Research 57: e2020WR028787. DOI: 10.1029/2020WR028787

  • Gier B. K., Buchwitz M., Reuter M. et al (2021). Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11848. DOI: 10.5194/egusphere-egu21-11848.

  • Gloege L., McKinley G.A., Landschützer P., et al. (2021). Quantifying errors in observationally based estimates of ocean carbon sink variability. Global Biogeochemical Cycles 35: e2020GB006788. DOI: 10.1029/2020GB006788  

  • Gregor L., and Gruber N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. Data 13: 777–808. DOI: 10.5194/essd-13-777-2021.

  • Hegerl G. C., Ballinger A.P., Booth B. B. B., et al. (2021). Toward Consistent Observational Constraints in Climate Predictions and Projections. Front. Clim. 3: 678109. DOI: 10.3389/fclim.2021.678109

  • Humphrey V., Berg A., Ciais P. et al. (2021). Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592: 65–69. DOI: 10.1038/s41586-021-03325-5

  • Jenkins S., Cain M., Friedlingstein, P. et al. (2021). Quantifying non-CO2 contributions to remaining carbon budgets. npj Clim Atmos Sci 4: 47. DOI: 10.1038/s41612-021-00203-9

  • Jones M. W., Andrew R. M., Peters G. P., et al. (2021). Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci Data 8: 2. DOI: 10.1038/s41597-020-00779-6

  • Jones, C. D., Hickman, J. E., Rumbold, S. T., et al. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical Research Letters, 48, e2020GL091883. DOI: 10.1029/2020GL091883 

  • Lacroix F., Ilyina T., Laruelle G. G., and Regnier P. (2021). Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic and a CO2 sink? Global Biogeochemical Cycles, 35: e2020GB006603. DOI: 10.1029/2020GB006603.

  • Lacroix, F., Ilyina, T., Mathis, M., et al. (2021). Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Global Change Biology 00: 1–23. DOI: 10.1111/gcb.15822

  • Le Quéré C., Peters G.P., Friedlingstein P. et al. (2021). Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 11: 197–199. DOI: 10.1038/s41558-021-01001-0

  • Leach N. J., Jenkins S., Nicholls Z., et al. (2021). FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geosci. Model Dev. 14: 3007–3036. DOI: 10.5194/gmd-14-3007-2021

  • Loughran T.F., Boysen L., Bastos A. et al. (2021). Past and Future Climate Variability Uncertainties in the Global Carbon Budget Using the MPI Grand Ensemble. Global Biogeochemical Cycles 35: e2021GB007019. DOI: 10.1029/2021GB007019

  • MacBean N., Scott R.L., Biederman J.A. et al. (2021). Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16: 094023. DOI: 10.1088/1748-9326/ac1a38

  • Maignan F., Abadie C., Remaud M., et al. (2021). Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach. Biogeosciences 18: 2917-2955. DOI: 10.5194/bg-18-2917-2021

  • Müller J. and Joos F. (2021). Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. Biogeosciences 18: 3657-3687. DOI: 10.5194/bg-18-3657-2021

  • O'Sullivan M., Zhang Y., Bellouin N. et al. (2021). Aerosol–light interactions reduce the carbon budget imbalance. Environ. Res. Lett. 16: 124072. DOI: 10.1088/1748-9326/ac3b77

  • Obermeier, W. A., Nabel, J. E. M. S., Loughran, T., et al. (2021). Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth Syst. Dynam. 12: 635–670. DOI: 10.5194/esd-12-635-2021.

  • Pihl E., Alfredsson E., Bengtsson M., et al. (2021). Ten new insights in climate science 2020 – a horizon scan. Global Sustainability 4: E5. DOI: 10.1017/sus.2021.2

  • Ritchie P.D.L., Clarke J.J., Cox P.M. et al. (2021). Overshooting tipping point thresholds in a changing climate. Nature 592: 517–523. DOI: 10.1038/s41586-021-03263-2

  • Rosan T. M., Goldewijk K. K., Ganzenmüller R. et al. (2021). A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environ. Res. Lett. 16: 074004. DOI: 10.1088/1748-9326/ac08c3

  • Spring A., Dunkl I., Li H., et al. (2021). Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle. Earth Syst. Dynam. 12: 1139–1167. DOI: 10.5194/esd-12-1139-2021

  • Tagliabue A., Kwiatkowski L., Bopp L., et al. (2021). Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services. Front. Clim. 3: 738224. DOI: 10.3389/fclim.2021.738224

  • Teckentrup L., De Kauwe M.G., Pitman A.J., et al. (2021). Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18: 5639-5668. DOI: 10.5194/bg-18-5639-2021

  • Teckentrup L., De Kauwe M.G., Pitman A.J., et al. (2021). Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18: 5639–5668. DOI: 10.5194/bg-18-5639-2021

  • Terhaar J., Frölicher T. L., and Joos F. (2021). Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Sci. Adv. 7 (18): eabd5964. DOI: 10.1126/sciadv.abd5964

  • Terhaar J., Lauerwald R., Regnier P. et al. (2021). Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat Commun 12: 169. DOI: 10.1038/s41467-020-20470-z

  • Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble, Biogeosciences 18: 2221–2240. DOI: 10.5194/bg-18-2221-2021.

  • Torres O., Kwiatkowski L., Sutton A.J., et al. (2021). Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. Geophysical Research Letters 48: e2020GL090228. DOI: 10.1029/2020GL090228

  • Tschumi E., Lienert S., van der Wiel K., et al (2021). A climate database with varying drought-heat signatures for climate impact modelling. Geoscience Data Journal 9(1): 154-166. DOI: 10.1002/gdj3.129

  • Xu R., Tian H., Pan N., et al. (2021). Magnitude and uncertainty of nitrous oxide emissions from North America based on bottom-up and top-down approaches: Informing future research and national inventories. Geophysical Research Letters, 48, e2021GL095264. DOI: 10.1029/2021GL095264

  • Zhang, Y., Boucher, O., Ciais, P. et al. (2021). How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc. Geosci. Model Dev. 14: 2029–2039. DOI: 10.5194/gmd-14-2029-2021

  • Zhang, Y., Ciais, P., Boucher, O., et al. (2021). Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850–2014. Earth's Future 9: e2021EF002035. DOI: 10.1029/2021EF002035

  • Arora V. K., Katavouta A., Williams R. G., et al. (2020). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences 17: 4173–4222. DOI: 10.5194/bg-17-4173-2020.

  • Bastos A., Ciais P., Friedlingstein P., et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6. DOI: 10.1126/sciadv.aba2724.

  • Bastos A., Fu Z., Ciais P., et al. (2020). Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Phil. Trans. R. Soc. B 375. DOI: 10.1098/rstb.2019.0507.

  • Cheng L., Trenberth K. E., Gruber N., et al. (2020). Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate 1-74. DOI: 10.1175/JCLI-D-20-0366.1

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Supplement of Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020-supplement.

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020.

  • Forster P.M., Forster H.I, Evans M.J., et al. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change. DOI: 10.1038/s41558-020-0883-0

  • Friedlingstein P., O'Sullivan M., Jones M. W. et al (2020). Global Carbon Budget 2020. Earth Syst. Sci. Data 12: 3269-3340. DOI: 10.5194/essd-12-3269-2020.

  • Frölicher T. L., Ramseyer L., Raible C. C., et al. (2020). Potential predictability of marine ecosystem drivers, Biogeosciences, 17, 2061–2083. DOI: 10.5194/bg-17-2061-2020.

  • Gier B.K., Buchwitz M., Reuter M., Cox P.M., Friedlingstein P., and Eyring, V. (2020). Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. Biogeosciences 17, 6115-6144. DOI: 10.5194/bg-17-6115-2020

  • Hauck J., Zeising M., Le Quéré C., et al. (2020). Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Front. Mar. Sci. 7:571720. DOI: 10.3389/fmars.2020.571720.

  • Ilyina T., Li H., Spring A., et al. (2020). Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi‐model framework. Geophysical Research Letters, 47, e2020GL090695. DOI: 10.1029/2020GL090695.

  • Jones C.D., and Friedlingstein P. (2020). Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environ. Res. Lett. 15: 074019. DOI: 10.1088/1748-9326/ab858a

  • Jones C. D., Frölicher T. L., Koven C., et al (2020). Corrigendum to “The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions” published in Geosci. Model Dev., 12, 4375–4385, 2019. DOI: 10.5194/gmd-12-4375-2019-corrigendum

  • Keppler L., Landschützer P., Gruber N., et al. (2020). Seasonal carbon dynamics in the near‐global ocean. Global Biogeochemical Cycles, 34, e2020GB006571. DOI: 10.1029/2020GB006571.

  • Kondo, M., Patra, P.K., Sitch, S. et al. (2020). State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget. Glob. Change Biol. 26, 1068-1084. DOI: 10.1111/gcb.14917.

  • Kwiatkowski L., Torres O., Bopp L., et al. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470. DOI: 10.5194/bg-17-3439-2020.

  • Landschützer P., Laruelle G. G., Roobaert A., et al. (2020), A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553. DOI: 10.5194/essd-12-2537-2020.

  • Lauer A., Eyring V., Bellprat O., et al. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP. Geosci. Model Dev. 13: 4205–4228. DOI: 10.5194/gmd-13-4205-2020.

  • Lauerwald R., Regnier P., Guenet B., et al. (2020). How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon basin. One Earth 3: 226–236. DOI: 10.1016/j.oneear.2020.07.009

  • Le Quéré C., Jackson R.B., Jones M.W., et al. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change. DOI: 10.1038/s41558-020-0797-x.

  • Liu L., Gudmundsson L., Hauser M. et al. (2020). Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun 11, 4892. DOI: 10.1038/s41467-020-18631-1.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, Corrigendum. DOI: 10.5194/bg-17-2987-2020-corrigendum.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987-3016. DOI: 10.5194/bg-17-2987-2020.

  • Matthews H.D., Tokarska K.B., Nicholls Z.R.J. et al. (2020). Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779. DOI: 10.1038/s41561-020-00663-3

  • Nakhavali M., Lauerwald R., Regnier P., et al. (2020). Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology. Accepted Author Manuscript. DOI: 10.1111/gcb.15460.

  • Padrón, R.S., Gudmundsson, L., Decharme, B. et al. (2020). Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481. DOI: 10.1038/s41561-020-0594-1.

  • Pan S., Pan N., Tian H., et al. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, DOI: 10.5194/hess-24-1485-2020.

  • Pan S., Pan N., Tian H., et al. (2020). Supplement of Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, Supplement. DOI: 10.5194/hess-24-1485-2020-supplement.

  • Peters, G.P., Andrew, R.M., Canadell, J.G. et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Chang. 10, 3-6. DOI: 10.1038/s41558-019-0659-6

  • Reuter M., Buchwitz M., Schneising O., et al. (2020). Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmos. Meas. Tech. 13: 789–819. DOI: 10.5194/amt-13-789-2020.

  • Rodgers K. B., Ishii M., Frölicher T. L., et al. (2020). Coupling of Surface Ocean Heat and Carbon Perturbations over the Subtropical Cells under Twenty-First Century Climate Change. J. Climate, 33, 10321–10338. DOI: 10.1175/JCLI-D-19-1022.1.

  • Rodgers K. B., Schlunegger S., Slater R. D., et al. (2020). Reemergence of Anthropogenic Carbon Into the Ocean's Mixed Layer Strongly Amplifies Transient Climate Sensitivity. Geophysical Research Letters, 47. DOI: 10.1029/2020GL089275.

  • Rugenstein M., Bloch-Johnson J., Gregory J., et al. (2020). Equilibrium climate sensitivityestimated by equilibrating climatemodels. Geophysical ResearchLetters, 47. DOI: 10.1029/2019GL083898.

  • Schlund M., Eyring V., Camps‐Valls G., et al. (2020). Constraining uncertainty in projected gross primary production with machine learning. JGR Biogeosciences 125 (11): e2019JG005619. DOI: 10.1029/2019JG005619.

  • Schlund M., Lauer A., Gentine P., Sherwood S.C., and Eyring V. (2020). Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst. Dynam. 11, 1233-1258. DOI: 10.5194/esd-11-1233-2020.

  • Schlunegger S., Rodgers K. B.,Sarmiento, J. L., et al. (2020). Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends. Global Biogeochem. Cycles 34: e2019GB006453. DOI: 10.1029/2019GB006453.

  • Spring A., Ilyina T. and Marotzke J. (2020). Inherent uncertainty disguises attribution of reduced atmospheric CO2 growth to CO2 emission reductions for up to a decade. Environ. Res. Lett. 15, 114058. DOI: 10.1088/1748-9326/abc443

  • Spring A. and Ilyina T. (2020). Predictability horizons in the global carbon cycle inferred from a perfect-model framework. Geophysical Research Letters 47: e2019GL085311. DOI: 10.1029/2019GL085311

  • Terhaar J., Kwiatkowski L., and Bopp L. (2020). Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582 (7812): 379. DOI: 10.1038/s41586-020-2360-3.

  • Tian H., Xu R., Canadell J.G. et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256. DOI: 10.1038/s41586-020-2780-0.

  • Varney R.M., Chadburn S.E., Friedlingstein P., et al. (2020). A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications 11: 5544. DOI: 10.1038/s41467-020-19208-8.

  • Wang S., Zhang Y., Ju W., et al. (2020). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370: 1295-1300. DOI: 10.1126/science.abb7772

  • Watson A.J., Schuster U., Shutler J.D. et al. (2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat Commun 11, 4422. DOI: 10.1038/s41467-020-18203-3.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, 5401–5423, DOI: 10.5194/gmd-13-5401-2020.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Supplement of Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, Supplement, DOI: 10.5194/gmd-13-5401-2020-supplement.

  • Jones C. D., Frölicher T. L., Koven C. et al. (2019). The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions, Geosci. Model Dev., 12, 4375–4385, DOI: 10.5194/gmd-12-4375-2019.

  • Friedlingstein P., Allen M., Canadell J. G., et al. (2019). Comment on “The global tree restoration potential”. Science 366: 6463. DOI: 10.1126/science.aay8060

  • Friedlingstein, P., Jones, M. W., O'Sullivan, M. et al. (2019). Global Carbon Budget 2019, Earth Syst. Sci. Data 11, 1783-1838. DOI: 10.5194/essd-11-1783-2019

  • Jackson, R.B., Friedlingstein, P., Andrew, R.M., Canadell, J.G., Le Quere, C., and Peters, G.P. (2019). Persistent Fossil Fuel Growth Threatens the Paris Agreement and Planetary Health, Environ. Res. Lett. 14, 121001. DOI: 10.1088/1748-9326/ab57b3

  • Rugenstein M., Bloch-Johnson J., Abe-Ouchi A., et al. (2019). LongRunMIP. Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc. 100 (12): 2551–2570. DOI: 10.1175/bams-d-19-0068.1.