4C Publications

  • Yun J., Jeong S., Gruber N. et al. (2022). Enhance seasonal amplitude of atmospheric CO2 by the changing Southern Ocean carbon sink. Science Advances 8 (41). DOI: 10.1126/sciadv.abq0220

  • Orr J.C., Kwiatkowski L. & Pörtner H.O. (2022). Arctic Ocean annual high in pCO2 could shift from winter to summer. Nature 610: 94-100. DOI: 10.1038/s41586-022-05205-y

  • Varney R.M., Chadburn S.E., Burke E.J., and Cox P.M. (2022). Evaluation of soil carbon simulation in CMIP6 Earth system models. Biogeosciences 19: 4671-4704. DOI: 10.5194/bg-19-4671-2022

  • Ritchie P.D.L., Parry I., Clarke J.J. et al. (2022). Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia. Commun Earth Environ 3: 199. DOI: 10.1038/s43247-022-00528-0

  • Argles A.P.K., Moore J.R., and Cox P.M. (2022). Dynamic Global Vegetation Models: Searching for the balance between demographic process representation and computational tractability. PLOS Clim 1(9): e0000068. DOI: 10.1371/journal.pclm.0000068

  • Koven C.D., Arora V.K., Cadule P., et al. (2022). Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth Syst. Dynam. 13: 885–909. DOI: 10.5194/esd-13-885-2022

  • Braghiere R. K., Fisher J. B., Allen K., et al. (2022). Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. J. Adv. Model. Earth Syst. 14: e2022MS003204. DOI: 10.1029/2022MS003204

  • O’Sullivan M., Friedlingstein P., Sitch S., et al. (2022). Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat Commun 13: 4781. DOI: 10.1038/s41467-022-32416-8

  • Davies-Barnard T., Zaehle S., and Friedlingstein P. (2022). Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences 19: 3491-3503. DOI: 10.5194/bg-19-3491-2022

  • Liu Z., Deng Z., Zhu B. et al. (2022). Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. DOI: 10.1038/s41561-022-00965-8

  • Millington R.C., Rogers A., Cox P., et al. (2022). Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere 13: e4108. DOI: 10.1002/ecs2.4108

  • Dai M., Su J., Zhao Y., et al (2022). Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends. Annu Rev Earth Planet Sci 50: 593-626. DOI: 10.1146/annurev-earth-032320-090746

  • Friedlingstein P., Jones M.W., O'Sullivan M., et al. (2022). Global Carbon Budget 2021. Earth Syst. Sci. Data 14: 1917-2005. DOI: 10.5194/essd-14-1917-2022

  • Abadie C., Maignan F., Remaud M., et al. (2022). Global modelling of soil carbonyl sulfide exchanges. Biogeosciences 19: 2427-2463. DOI: 10.5194/bg-19-2427-2022

  • Tschumi E., Lienert S., van der Wiel K., et al. (2022). The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition. Biogeosciences 19: 1979-1993. DOI: 10.5194/bg-19-1979-2022

  • Rosan T.M., Sitch S., Mercado L.M., et al. (2022). Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Front. For. Glob. Change 5: 801408. DOI: 10.3389/ffgc.2022.801408

  • Jackson R.B., Friedlingstein P., Le Quéré C., et al. (2022). Global fossil carbon emissions rebound near pre-COVID-19 levels. Environ. Res. Lett. 17: 031001. DOI: 10.1088/1748-9326/ac55b6

  • Kondo M., Sitch S., Ciais P., et al. (2022). Are land-use change emissions in Southeast Asia decreasing or increasing? Global Biogeochemical Cycles 36: e2020GB006909. DOI: 10.1029/2020GB006909

  • Torres O., Kwiatkowski L., Sutton A.J., et al. (2021). Characterizing mean and extreme diurnal variability of ocean CO2 system variables across marine environments. Geophysical Research Letters 48: e2020GL090228. DOI: 10.1029/2020GL090228

  • Allen M.R., Peters G.P., Shine K.P. et al. (2022). Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. npj Clim Atmos Sci 5: 5. DOI: 10.1038/s41612-021-00226-2

  • Müller J. and Joos F. (2021). Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. Biogeosciences 18: 3657-3687. DOI: 10.5194/bg-18-3657-2021

  • Maignan F., Abadie C., Remaud M., et al. (2021). Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a land surface model and the leaf relative uptake approach. Biogeosciences 18: 2917-2955. DOI: 10.5194/bg-18-2917-2021

  • Clarke J., Huntingford C., Ritchie P. et al. (2021). The compost bomb instability in the continuum limit. Eur. Phys. J. Spec. Top. 230: 3335-3341. DOI: 10.1140/epjs/s11734-021-00013-3

  • Gloege L., McKinley G.A., Landschützer P., et al. (2021). Quantifying errors in observationally based estimates of ocean carbon sink variability. Global Biogeochemical Cycles 35: e2020GB006788. DOI: 10.1029/2020GB006788  

  • Allen M., Tanaka K., Macey A., et al. (2021). Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming. Environ. Res. Lett. 16: 074009. DOI: 10.1088/1748-9326/abfcf9

  • Ghiggi G., Humphrey V., Seneviratne S.I., and Gudmundsson L. (2021). G-RUN ENSEMBLE: A multi-forcing observation-based global runoff reanalysis. Water Resources Research 57: e2020WR028787. DOI: 10.1029/2020WR028787

  • Frischknecht T., Ekici A., and Joos F. (2022). Radiocarbon in the land and ocean components of the Community Earth System Model. Global Biogeochemical Cycles 36: e2021GB007042. DOI: 10.1029/2021GB007042

  • Cain M., Jenkins S., Allen M.R., et al. (2022). Methane and the Paris Agreement temperature goals. Phil. Trans. R. Soc. A. 380: 20200456. DOI: 10.1098/rsta.2020.0456

  • Teckentrup L., De Kauwe M.G., Pitman A.J., et al. (2021). Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences 18: 5639-5668. DOI: 10.5194/bg-18-5639-2021

  • Tagliabue A., Kwiatkowski L., Bopp L., et al. (2021). Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services. Front. Clim. 3: 738224. DOI: 10.3389/fclim.2021.738224

  • Le Quéré C., Peters G.P., Friedlingstein P. et al. (2021). Fossil CO2 emissions in the post-COVID-19 era. Nat. Clim. Chang. 11: 197–199. DOI: 10.1038/s41558-021-01001-0

  • Loughran T.F., Boysen L., Bastos A. et al. (2021). Past and Future Climate Variability Uncertainties in the Global Carbon Budget Using the MPI Grand Ensemble. Global Biogeochemical Cycles 35: e2021GB007019. DOI: 10.1029/2021GB007019

  • O'Sullivan M., Zhang Y., Bellouin N. et al. (2021). Aerosol–light interactions reduce the carbon budget imbalance. Environ. Res. Lett. 16: 124072. DOI: 10.1088/1748-9326/ac3b77

  • Fay A.R., Gregor L., Landschützer P., et al. (2021). SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach. Earth Syst. Sci. Data 13: 4693–4710. DOI: 10.5194/essd-13-4693-2021

  • MacBean N., Scott R.L., Biederman J.A. et al. (2021). Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems. Environ. Res. Lett. 16: 094023. DOI: 10.1088/1748-9326/ac1a38

  • Jones C.D., and Friedlingstein P. (2020). Quantifying process-level uncertainty contributions to TCRE and carbon budgets for meeting Paris Agreement climate targets. Environ. Res. Lett. 15: 074019. DOI: 10.1088/1748-9326/ab858a

  • Reuter M., Buchwitz M., Schneising O., et al. (2020). Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmos. Meas. Tech. 13: 789–819. DOI: 10.5194/amt-13-789-2020.

  • Qiu C., Ciais P., Zhu D., et al. (2022). A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth 5: 86-97. doi: 10.1016/j.oneear.2021.12.008

  • Bastos A., Orth R., Reichstein M., et al. (2021). Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth Syst. Dynam. 12, 1015-1035. DOI: 10.5194/esd-12-1015-2021.

  • Spring A., Dunkl I., Li H., et al. (2021). Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle. Earth Syst. Dynam. 12: 1139–1167. DOI: 10.5194/esd-12-1139-2021

  • Jenkins S., Cain M., Friedlingstein, P. et al. (2021). Quantifying non-CO2 contributions to remaining carbon budgets. npj Clim Atmos Sci 4: 47. DOI: 10.1038/s41612-021-00203-9

  • Gregor L., and Gruber N. (2021). OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification. Earth Syst. Sci. Data 13: 777–808. DOI: 10.5194/essd-13-777-2021.

  • Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L. (2021). Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble, Biogeosciences 18: 2221–2240. DOI: 10.5194/bg-18-2221-2021.

  • Lauer A., Eyring V., Bellprat O., et al. (2020). Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP. Geosci. Model Dev. 13: 4205–4228. DOI: 10.5194/gmd-13-4205-2020.

  • Lauerwald R., Regnier P., Guenet B., et al. (2020). How simulations of the land carbon sink are biased by ignoring fluvial carbon transfers: a case study for the Amazon basin. One Earth 3: 226–236. DOI: 10.1016/j.oneear.2020.07.009

  • Terhaar J., Frölicher T. L., and Joos F. (2021). Southern Ocean anthropogenic carbon sink constrained by sea surface salinity. Sci. Adv. 7 (18): eabd5964. DOI: 10.1126/sciadv.abd5964

  • Hegerl G. C., Ballinger A.P., Booth B. B. B., et al. (2021). Toward Consistent Observational Constraints in Climate Predictions and Projections. Front. Clim. 3: 678109. DOI: 10.3389/fclim.2021.678109

  • Zhang, Y., Ciais, P., Boucher, O., et al. (2021). Disentangling the impacts of anthropogenic aerosols on terrestrial carbon cycle during 1850–2014. Earth's Future 9: e2021EF002035. DOI: 10.1029/2021EF002035

  • Obermeier, W. A., Nabel, J. E. M. S., Loughran, T., et al. (2021). Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches. Earth Syst. Dynam. 12: 635–670. DOI: 10.5194/esd-12-635-2021.

  • Humphrey V., Berg A., Ciais P. et al. (2021). Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592: 65–69. DOI: 10.1038/s41586-021-03325-5

  • Rosan T. M., Goldewijk K. K., Ganzenmüller R. et al. (2021). A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environ. Res. Lett. 16: 074004. DOI: 10.1088/1748-9326/ac08c3

  • Lacroix, F., Ilyina, T., Mathis, M., et al. (2021). Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Global Change Biology 00: 1–23. DOI: 10.1111/gcb.15822

  • Lacroix F., Ilyina T., Laruelle G. G., and Regnier P. (2021). Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic and a CO2 sink? Global Biogeochemical Cycles, 35: e2020GB006603. DOI: 10.1029/2020GB006603.

  • Leach N. J., Jenkins S., Nicholls Z., et al. (2021). FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geosci. Model Dev. 14: 3007–3036. DOI: 10.5194/gmd-14-3007-2021

  • Friedlingstein P., O'Sullivan M., Jones M. W. et al (2020). Global Carbon Budget 2020. Earth Syst. Sci. Data 12: 3269-3340. DOI: 10.5194/essd-12-3269-2020.

  • Gier B. K., Buchwitz M., Reuter M. et al (2021). Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11848. DOI: 10.5194/egusphere-egu21-11848.

  • Jones M. W., Andrew R. M., Peters G. P., et al. (2021). Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Sci Data 8: 2. DOI: 10.1038/s41597-020-00779-6

  • Jones C. D., Frölicher T. L., Koven C., et al (2020). Corrigendum to “The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions” published in Geosci. Model Dev., 12, 4375–4385, 2019. DOI: 10.5194/gmd-12-4375-2019-corrigendum

  • Terhaar J., Lauerwald R., Regnier P. et al. (2021). Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat Commun 12: 169. DOI: 10.1038/s41467-020-20470-z

  • Schlund M., Lauer A., Gentine P., Sherwood S.C., and Eyring V. (2020). Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst. Dynam. 11, 1233-1258. DOI: 10.5194/esd-11-1233-2020.

  • Gier B.K., Buchwitz M., Reuter M., Cox P.M., Friedlingstein P., and Eyring, V. (2020). Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. Biogeosciences 17, 6115-6144. DOI: 10.5194/bg-17-6115-2020

  • Jones, C. D., Hickman, J. E., Rumbold, S. T., et al. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical Research Letters, 48, e2020GL091883. DOI: 10.1029/2020GL091883 

  • Ilyina T., Li H., Spring A., et al. (2020). Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi‐model framework. Geophysical Research Letters, 47, e2020GL090695. DOI: 10.1029/2020GL090695.

  • Spring A., Ilyina T. and Marotzke J. (2020). Inherent uncertainty disguises attribution of reduced atmospheric CO2 growth to CO2 emission reductions for up to a decade. Environ. Res. Lett. 15, 114058. DOI: 10.1088/1748-9326/abc443

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Supplement of Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020-supplement.

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020.

  • Nakhavali M., Lauerwald R., Regnier P., et al. (2020). Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology. Accepted Author Manuscript. DOI: 10.1111/gcb.15460.

  • Liu L., Gudmundsson L., Hauser M. et al. (2020). Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun 11, 4892. DOI: 10.1038/s41467-020-18631-1.

  • Padrón, R.S., Gudmundsson, L., Decharme, B. et al. (2020). Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481. DOI: 10.1038/s41561-020-0594-1.

  • Rodgers K. B., Schlunegger S., Slater R. D., et al. (2020). Reemergence of Anthropogenic Carbon Into the Ocean's Mixed Layer Strongly Amplifies Transient Climate Sensitivity. Geophysical Research Letters, 47. DOI: 10.1029/2020GL089275.

  • Schlunegger S., Rodgers K. B.,Sarmiento, J. L., et al. (2020). Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends. Global Biogeochem. Cycles 34: e2019GB006453. DOI: 10.1029/2019GB006453.

  • Rodgers K. B., Ishii M., Frölicher T. L., et al. (2020). Coupling of Surface Ocean Heat and Carbon Perturbations over the Subtropical Cells under Twenty-First Century Climate Change. J. Climate, 33, 10321–10338. DOI: 10.1175/JCLI-D-19-1022.1.

  • Frölicher T. L., Ramseyer L., Raible C. C., et al. (2020). Potential predictability of marine ecosystem drivers, Biogeosciences, 17, 2061–2083. DOI: 10.5194/bg-17-2061-2020.

  • Pan S., Pan N., Tian H., et al. (2020). Supplement of Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, Supplement. DOI: 10.5194/hess-24-1485-2020-supplement.

  • Pan S., Pan N., Tian H., et al. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, DOI: 10.5194/hess-24-1485-2020.

  • Yang H., Ciais P., Santoro M., et al. (2020). Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates. Global Change Biology, Wiley, 26 (7), pp.3997-4012. DOI: 10.1111/gcb.15117.

  • Bastos A., Ciais P., Friedlingstein P., et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6. DOI: 10.1126/sciadv.aba2724.

  • Bastos A., Fu Z., Ciais P., et al. (2020). Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Phil. Trans. R. Soc. B 375. DOI: 10.1098/rstb.2019.0507.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, Corrigendum. DOI: 10.5194/bg-17-2987-2020-corrigendum.

  • Watson A.J., Schuster U., Shutler J.D. et al. (2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat Commun 11, 4422. DOI: 10.1038/s41467-020-18203-3.

  • Landschützer P., Laruelle G. G., Roobaert A., et al. (2020), A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553. DOI: 10.5194/essd-12-2537-2020.

  • Hauck J., Zeising M., Le Quéré C., et al. (2020). Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Front. Mar. Sci. 7:571720. DOI: 10.3389/fmars.2020.571720.

  • Arora V. K., Katavouta A., Williams R. G., et al. (2020). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences 17: 4173–4222. DOI: 10.5194/bg-17-4173-2020.

  • Kwiatkowski L., Torres O., Bopp L., et al. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470. DOI: 10.5194/bg-17-3439-2020.

  • Tian H., Xu R., Canadell J.G. et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256. DOI: 10.1038/s41586-020-2780-0.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Supplement of Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, Supplement, DOI: 10.5194/gmd-13-5401-2020-supplement.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, 5401–5423, DOI: 10.5194/gmd-13-5401-2020.

  • Rugenstein M., Bloch-Johnson J., Gregory J., et al. (2020). Equilibrium climate sensitivityestimated by equilibrating climatemodels. Geophysical ResearchLetters, 47. DOI: 10.1029/2019GL083898.

  • Rugenstein M., Bloch-Johnson J., Abe-Ouchi A., et al. (2019). LongRunMIP. Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc. 100 (12): 2551–2570. DOI: 10.1175/bams-d-19-0068.1.

  • Schlund M., Eyring V., Camps‐Valls G., et al. (2020). Constraining uncertainty in projected gross primary production with machine learning. JGR Biogeosciences 125 (11): e2019JG005619. DOI: 10.1029/2019JG005619.

  • Friedlingstein P., Allen M., Canadell J. G., et al. (2019). Comment on “The global tree restoration potential”. Science 366: 6463. DOI: 10.1126/science.aay8060

  • Jones C. D., Frölicher T. L., Koven C. et al. (2019). The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions, Geosci. Model Dev., 12, 4375–4385, DOI: 10.5194/gmd-12-4375-2019.

  • Keppler L., Landschützer P., Gruber N., et al. (2020). Seasonal carbon dynamics in the near‐global ocean. Global Biogeochemical Cycles, 34, e2020GB006571. DOI: 10.1029/2020GB006571.

  • Matthews H.D., Tokarska K.B., Nicholls Z.R.J. et al. (2020). Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779. DOI: 10.1038/s41561-020-00663-3

  • Varney R.M., Chadburn S.E., Friedlingstein P., et al. (2020). A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications 11: 5544. DOI: 10.1038/s41467-020-19208-8.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987-3016. DOI: 10.5194/bg-17-2987-2020.

  • Cheng L., Trenberth K. E., Gruber N., et al. (2020). Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate 1-74. DOI: 10.1175/JCLI-D-20-0366.1

  • Forster P.M., Forster H.I, Evans M.J., et al. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change. DOI: 10.1038/s41558-020-0883-0

  • Terhaar J., Kwiatkowski L., and Bopp L. (2020). Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582 (7812): 379. DOI: 10.1038/s41586-020-2360-3.

  • Spring A. and Ilyina T. (2020). Predictability horizons in the global carbon cycle inferred from a perfect-model framework. Geophysical Research Letters 47: e2019GL085311. DOI: 10.1029/2019GL085311

  • Le Quéré C., Jackson R.B., Jones M.W., et al. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change. DOI: 10.1038/s41558-020-0797-x.

  • Friedlingstein, P., Jones, M. W., O'Sullivan, M. et al. (2019). Global Carbon Budget 2019, Earth Syst. Sci. Data 11, 1783-1838. DOI: 10.5194/essd-11-1783-2019

  • Jackson, R.B., Friedlingstein, P., Andrew, R.M., Canadell, J.G., Le Quere, C., and Peters, G.P. (2019). Persistent Fossil Fuel Growth Threatens the Paris Agreement and Planetary Health, Environ. Res. Lett. 14, 121001. DOI: 10.1088/1748-9326/ab57b3

  • Peters, G.P., Andrew, R.M., Canadell, J.G. et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Chang. 10, 3-6. DOI: 10.1038/s41558-019-0659-6

  • Kondo, M., Patra, P.K., Sitch, S. et al. (2020). State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget. Glob. Change Biol. 26, 1068-1084. DOI: 10.1111/gcb.14917.