4C Publications

  • Terhaar J., Lauerwald R., Regnier P. et al. (2021). Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat Commun 12: 169. DOI: 10.1038/s41467-020-20470-z

  • Schlund M., Lauer A., Gentine P., Sherwood S.C., and Eyring V. (2020). Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Syst. Dynam. 11, 1233-1258. DOI: 10.5194/esd-11-1233-2020.

  • Gier B.K., Buchwitz M., Reuter M., Cox P.M., Friedlingstein P., and Eyring, V. (2020). Spatially resolved evaluation of Earth system models with satellite column-averaged CO2. Biogeosciences 17, 6115-6144. DOI: 10.5194/bg-17-6115-2020

  • Jones, C. D., Hickman, J. E., Rumbold, S. T., et al. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical Research Letters, 48, e2020GL091883. DOI: 10.1029/2020GL091883 

  • Ilyina T., Li H., Spring A., et al. (2020). Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi‐model framework. Geophysical Research Letters, 47, e2020GL090695. DOI: 10.1029/2020GL090695.

  • Spring A., Ilyina T. and Marotzke J. (2020). Inherent uncertainty disguises attribution of reduced atmospheric CO2 growth to CO2 emission reductions for up to a decade. Environ. Res. Lett. 15, 114058. DOI: 10.1088/1748-9326/abc443

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Supplement of Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020-supplement.

  • Davies-Barnard T., Meyerholt J., Zaehle S., et al. (2020). Nitrogen cycling in CMIP6 land surface models: progress and limitations, Biogeosciences, 17, 5129–5148. DOI: 10.5194/bg-17-5129-2020.

  • Nakhavali M., Lauerwald R., Regnier P., et al. (2020). Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology. Accepted Author Manuscript. DOI: 10.1111/gcb.15460.

  • Liu L., Gudmundsson L., Hauser M. et al. (2020). Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun 11, 4892. DOI: 10.1038/s41467-020-18631-1.

  • Padrón, R.S., Gudmundsson, L., Decharme, B. et al. (2020). Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481. DOI: 10.1038/s41561-020-0594-1.

  • Rodgers K. B., Schlunegger S., Slater R. D., et al. (2020). Reemergence of Anthropogenic Carbon Into the Ocean's Mixed Layer Strongly Amplifies Transient Climate Sensitivity. Geophysical Research Letters, 47. DOI: 10.1029/2020GL089275.

  • Schlunegger S., Rodgers K. B.,Sarmiento, J. L., et al. (2020). Time of emergence and Large Ensembleintercomparison for oceanbiogeochemical trends. GlobalBiogeochemical Cycles, 34. DOI: 10.1029/2019GB006453.

  • Rodgers K. B., Ishii M., Frölicher T. L., et al. (2020). Coupling of Surface Ocean Heat and Carbon Perturbations over the Subtropical Cells under Twenty-First Century Climate Change. J. Climate, 33, 10321–10338. DOI: 10.1175/JCLI-D-19-1022.1.

  • Frölicher T. L., Ramseyer L., Raible C. C., et al. (2020). Potential predictability of marine ecosystem drivers, Biogeosciences, 17, 2061–2083. DOI: 10.5194/bg-17-2061-2020.

  • Frölicher T. L., Ramseyer L., Raible C. C., et al. (2020). Potential predictability of marine ecosystem drivers, Biogeosciences Discussions, 17. DOI: 10.5194/bg-2019-506.

  • Pan S., Pan N., Tian H., et al. (2020). Supplement of Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, Supplement. DOI: 10.5194/hess-24-1485-2020-supplement.

  • Pan S., Pan N., Tian H., et al. (2020). Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling, Hydrol. Earth Syst. Sci., 24, 1485–1509, DOI: 10.5194/hess-24-1485-2020.

  • Yang H., Ciais P., Santoro M., et al. (2020). Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates. Global Change Biology, Wiley, 26 (7), pp.3997-4012. DOI: 10.1111/gcb.15117.

  • Bastos A., Ciais P., Friedlingstein P., et al. (2020). Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6. DOI: 10.1126/sciadv.aba2724.

  • Bastos A., Fu Z., Ciais P., et al. (2020). Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Phil. Trans. R. Soc. B 375. DOI: 10.1098/rstb.2019.0507.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, Corrigendum. DOI: 10.5194/bg-17-2987-2020-corrigendum.

  • Watson A.J., Schuster U., Shutler J.D. et al. (2020). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat Commun 11, 4422. DOI: 10.1038/s41467-020-18203-3.

  • Landschützer P., Laruelle G. G., Roobaert A., et al. (2020), A uniform pCO2 climatology combining open and coastal oceans, Earth Syst. Sci. Data, 12, 2537–2553. DOI: 10.5194/essd-12-2537-2020.

  • Hauck J., Zeising M., Le Quéré C., et al. (2020). Consistency and Challenges in the Ocean Carbon Sink Estimate for the Global Carbon Budget. Front. Mar. Sci. 7:571720. DOI: 10.3389/fmars.2020.571720.

  • Arora V. K., Katavouta A., Williams R. G., et al. (2020). Supplement of Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, Supplement. DOI: 10.5194/bg-17-4173-2020-supplement.

  • Arora V. K., Katavouta A., Williams R. G., et al. (2020). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222. DOI: 10.5194/bg-17-4173-2020.

  • Arora V. K., Katavouta A., Williams R. G., et al. (2020). Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences Discussions. DOI: 10.5194/bg-2019-473.

  • Kwiatkowski L., Torres O., Bopp L., et al. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences Discussions. DOI: 10.5194/bg-2020-16.

  • Kwiatkowski L., Torres O., Bopp L., et al. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470. DOI: 10.5194/bg-17-3439-2020.

  • Tian H., Xu R., Canadell J.G. et al. (2020). A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256. DOI: 10.1038/s41586-020-2780-0.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Supplement of Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, Supplement, DOI: 10.5194/gmd-13-5401-2020-supplement.

  • Zhang Y., Bastos A., Maignan F., et al. (2020). Modeling the impacts of diffuse light fraction on photosynthesis in ORCHIDEE (v5453) land surface model, Geosci. Model Dev., 13, 5401–5423, DOI: 10.5194/gmd-13-5401-2020.

  • Rugenstein M., Bloch-Johnson J., Gregory J., et al. (2020). Equilibrium climate sensitivityestimated by equilibrating climatemodels. Geophysical ResearchLetters, 47. DOI: 10.1029/2019GL083898.

  • Rugenstein M., Bloch-Johnson J., Abe-Ouchi A., et al. (2019). LongRunMIP. Motivation and design for a large collection of millennial-length AOGCM simulations. Bull. Amer. Meteor. Soc. 100 (12): 2551–2570. DOI: 10.1175/bams-d-19-0068.1.

  • Schlund M., Eyring V., Camps‐Valls G., et al. (2020). Constraining uncertainty in projected gross primary production with machine learning. Journal of Geophysical Research: Biogeosciences, 125. DOI: 10.1029/2019JG005619.

  • Reuter M., Buchwitz M., Schneising O., et al. (2020). Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003-2018) for carbon and climate applications. Atmospheric Measurement Techniques. 13. DOI: 10.5194/amt-13-789-2020.

  • Friedlingstein P., Allen M., Canadell J. G., et al. (2019). Comment on “The global tree restoration potential”. Science, 366, 6463. DOI: 10.1126/science.aay8060

  • Jones C. D., Frölicher T. L., Koven C. et al. (2019). The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions, Geosci. Model Dev., 12, 4375–4385, DOI: 10.5194/gmd-12-4375-2019.

  • Keppler L., Landschützer P., Gruber N., et al. (2020). Seasonal carbon dynamics in the near‐global ocean. Global Biogeochemical Cycles, 34, e2020GB006571. DOI: 10.1029/2020GB006571.

  • Matthews H.D., Tokarska K.B., Nicholls Z.R.J. et al. (2020). Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nat. Geosci. 13, 769–779. DOI: 10.1038/s41561-020-00663-3

  • Varney R.M., Chadburn S.E., Friedlingstein P., et al. (2020). A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications 115544. DOI: 10.1038/s41467-020-19208-8.

  • MacDougall A. H., Frölicher T. L., Jones C. D., et al. (2020). Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2. Biogeosciences 17, 2987-3016. DOI: 10.5194/bg-17-2987-2020.

  • Cheng L., Trenberth K. E., Gruber N., et al. (2020). Improved estimates of changes in upper ocean salinity and the hydrological cycle. Journal of Climate 1-74. DOI: 10.1175/JCLI-D-20-0366.1

  • Forster P.M., Forster H.I, Evans M.J., et al. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change. DOI: 10.1038/s41558-020-0883-0

  • Terhaar J., Kwiatkowski L., and Bopp L. (2020). Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582 (7812): 379. DOI: 10.1038/s41586-020-2360-3.

  • Spring A. and Ilyina T. (2020). Predictability horizons in the global carbon cycle inferred from a perfect-model framework. Geophysical Research Letters 47: e2019GL085311. DOI: 10.1029/2019GL085311

  • Le Quéré C., Jackson R.B., Jones M.W., et al. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change. DOI: 10.1038/s41558-020-0797-x.

  • Friedlingstein, P., Jones, M. W., O'Sullivan, M. et al. (2019). Global Carbon Budget 2019, Earth Syst. Sci. Data 11, 1783-1838. DOI: 10.5194/essd-11-1783-2019

  • Jackson, R.B., Friedlingstein, P., Andrew, R.M., Canadell, J.G., Le Quere, C., and Peters, G.P. (2019). Persistent Fossil Fuel Growth Threatens the Paris Agreement and Planetary Health, Environ. Res. Lett. 14, 121001. DOI: 10.1088/1748-9326/ab57b3

  • Peters, G.P., Andrew, R.M., Canadell, J.G. et al. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nat. Clim. Chang. 10, 3-6. DOI: 10.1038/s41558-019-0659-6

  • Kondo, M., Patra, P.K., Sitch, S. et al. (2020). State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget. Glob. Change Biol. 26, 1068-1084. DOI: 10.1111/gcb.14917.